Open Access

Influence of Dopants on Structure of Polycrystalline Bismuth Niobate


Cite

1. W. Wersing, Microwave ceramics for resonators and filters, Current Opinion in Solid State and Materials Science 1, 5 (1996) 715-731.10.1016/S1359-0286(96)80056-8Search in Google Scholar

2. B. Jancar, D. Suvorov, Microwave ceramics, in: Ceramics Science and Technology, Volume 4: Applications, Edited by R. Riedel, I-W. Chen., Wiley-VCH Verlag GmbH & Co. KGaA, (2013), 321-343.10.1002/9783527631971.ch08Search in Google Scholar

3. M.T. Sebastian, Dielectric Materials for Wireless Communications, Elsevier, Oxford, (2008)Search in Google Scholar

4. Y.Ch. Liou, W.Ch. Tsai, H.M. Chen, Low-temperature synthesis of BiNbO4 ceramics using reaction-sintering process, Ceramics International 35 (2009) 2119–2122.10.1016/j.ceramint.2008.11.030Search in Google Scholar

5. M. Płońska, D. Czekaj, Studies of temperature and fabrication methods influence on structure and microstructure of BiNbO4 microwave electroceramics, Archives of Metallurgy and Materials 56, 4 (2011) 1169-1175.10.2478/v10172-011-0131-8Search in Google Scholar

6. Z. Wang, X. Yao, L. Zhang, CeO2-modified BiNbO4 microwave ceramics sintered under atmosphere, Ceramics International 30 (2004) 1329–1333.10.1016/j.ceramint.2003.12.112Search in Google Scholar

7. Y. Pang, Ch. Zhong, Sh. Hang, Effects of Gd doping on the sintering and microwave dielectric properties of BiNbO4 ceramics, Journal of Materials Science 42 (2007), 7052–705510.1007/s10853-007-1641-7Search in Google Scholar

8. D. Shihua, Y. Xi, Y. Yong, Dielectric properties of B2O3-doped BiNbO4 ceramics, Ceramics International 30 (2004) 1195–1198.10.1016/j.ceramint.2003.12.030Search in Google Scholar

9. D. Zhou, H. Wang, X. Yao, Microwave dielectric properties and co-firing of BiNbO4 ceramics with CuO substitution, Materials Chemistry and Physics 104 (2007) 397–402.10.1016/j.matchemphys.2007.03.038Search in Google Scholar

10. L. Zhang, X. Yao, H. Wang, D. Zhou, The effect of sintering atmosphere on V2O5 substituted BiNbO4 microwave ceramics, Journal of Electroceramics 21 (2008) 465–468.10.1007/s10832-007-9222-3Search in Google Scholar

11. H.R. Lee, K.H. Yoon, E.S. Kim, J.W. Choi, R. Voucher, Microwave dielectric properties of BiNbO4 ceramics with CuO–V2O5 addition, Ceramics International 38S (2012) S177–S18110.1016/j.ceramint.2011.04.078Search in Google Scholar

12. H. Kagata, T. Inoue, J. Kato, I. Kameyama, Low-fire bismuth-based dielectric ceramics for microwave use, Japanese Journal of Applied Physics 31 (1992) 3152–3155.10.1143/JJAP.31.3152Search in Google Scholar

13. A. Koller (Ed.) Structure and Properties of Ceramics, Elsevier Science, 1994.Search in Google Scholar

14. A. Lisinska-Czekaj, D. Czekaj, Fabrication and study of BiNbO4 ceramics, Key Engineering Materials 512-515 (2012) 1212-1217.10.4028/www.scientific.net/KEM.512-515.1212Search in Google Scholar

15. A. Lisinska-Czekaj, D. Czekaj, J. Plewa, Influence of processing conditions on crystal structure of BiNbO4 ceramics, Ciencia & Tecnologia dos Materiais 29 (2017) e215-e21810.1016/j.ctmat.2016.03.003Search in Google Scholar

16. MATCH! Version 2.0.11, CRYSTAL IMPACT, Postfach 1251, 53002 Bonn, Germany (URL: http://www.crystalimpact.com/match)Search in Google Scholar

17. ISCD Database, FIZ Karlsruhe, (URL.:http://www.fiz-karlsruhe.de)Search in Google Scholar

18. International Centre for Diffraction Data, 12 Campus Boulevard, Newton Square, PA 19073-3273 U.S.A.; (URL: http://www.icdd.com)Search in Google Scholar

19. IUCr/COD/AMCSD Database (URL.: http://www.crystalimpact.com.match)Search in Google Scholar

20. H.M. Rietveld, The Rietveld method-a historical perspective, Australian Journal of Physics (1988) 113-116.10.1071/PH880113Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials