Open Access

Storage of Hydrogen in Activated Carbons and Carbon Nanotubes


Cite

1. Barbir F., Hydrogen. International association for hydrogen energy. www.ihae.org. (2015).Search in Google Scholar

2. Mormillan M., Veziroglu T.N., Current status of hydrogen energy. 6 (2002) 141-179.Search in Google Scholar

3. Ramage J., Energy: A Guidebook. 1st ed. New York: Oxford University Press, 1983Search in Google Scholar

4. Bouza A., Petrovic J., Read C., Satyapal S., Milliken J., The national hydrogen storage project. ACS Division of Fuel Chemistry. 49 2 (2004) 839.Search in Google Scholar

5. Yang J., Sudik A., Wolverton C., Siegel D.J., High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chemical Society Reviews. 39 (2010) 656-675.Search in Google Scholar

6. Strobel R., Garche J., Moseley P.T., Jorissen L., Wolf G., Hydrogen storage by carbon materials. Journal of Power Sources. 159 (2006) 781-801.Search in Google Scholar

7. Iijima S., Helical microtubules of graphitic carbon. Nature. 354 6348 (1991) 56-58.Search in Google Scholar

8. Oyetade O.A., Nyamori V.O., Martincigh B.S., Jonnalagadda S.B., Effectiveness of carbon nanotube–cobalt ferrite nanocomposites for the adsorption of rhodamine B from aqueous solutions. RSC Advances. 5 (2015) 22724–22739.Search in Google Scholar

9. Ombaka L.M., Ndungu P.G., Nyamori V.O., Pyrrolic nitrogen-doped carbon nanotubes: physicochemical properties, interactions with Pd and their role in the selective hydrogenation of nitrobenzophenone. RSC Advances. 5 (2014) 109–122.Search in Google Scholar

10. Zabet M., Moradian S., Ranjbar Z., Zanganeh., Effect of carbon nanotubes on electrical and mechanical properties of multiwalled carbon nanotubes/epoxy coatings. J. Coat. Technol. Res. 13 1 (2016) 191–200.Search in Google Scholar

11. Thakare J.G., Pandey C., Mulik R.S., Mahapatra M.M., Mechanical property evaluation of carbon nanotubes reinforced plasma sprayed YSZ-alumina composite coating. Ceramics International. 44 (2018) 6980–6989.Search in Google Scholar

12. Esawi A.M.K., Morsi K., Sayed A., Taher M., Lanka S., Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Composites Science and Technology. 70 (2010) 2237–2241.Search in Google Scholar

13. Dillon A.C., Jones K.M., Bekkedahl T.A., Kiang C.H., Bethune D.S., Heben M.J., Storage of hydrogen in single-walled carbon nanotubes. Nature. 386 (1997) 377-8.Search in Google Scholar

14. Dillon A.C., Gennet T., Alleman J.L., Jones K.M., Parilla P.A., Heben M.J., Carbon nanotube materials for hydrogen storage. Proceedings of the 2000 U.S. DOE Hydrogen Program Review. 2 (2000) 421-440.Search in Google Scholar

15. Darkrim F.L., Malbrunot P., Tartaglia G.P., Review of hydrogen storage by adsroption in carbon nanotubes. International Journal of Hydrogen Energy. 27 2 (2002) 193-202.Search in Google Scholar

16. Kaushik B.K., Majumder M.K., Carbon nanotube based VLSI interconnects. Springer Briefs in Applied Sciences and Technology. DOI 10.1007/978-81-322-2047-3_1, 17-37.Search in Google Scholar

17. Chambers A., Park C., Baker R.T.K., Rodriguez N.M., Hydrogen storage in graphite nanofibers. The Journal of Physical Chemistry B. 102 22 (1998) 4253-4256.Search in Google Scholar

18. Nishimiya N., Ishigaki K., Takikawa H., Ikeda M., Hibi Y., Sakakibara T., Matsumoto A., Tsutsumi K., Hydrogen sorption by single-walled carbon nanotubes prepared by a torch arc method. Journal of Alloys and Compounds. 339 (2002) 275-282.Search in Google Scholar

19. Smith M.R., Bittner E.W., Shi W., Johnson J.K., Bockrath B.C., Chemical activation of single-walled carbon nanotubes for hydrogen adsorption. The Journal of Physical Chemistry B. 107 16 (2003) 3752-3760.Search in Google Scholar

20. Silambasaran D., Surya V.J., Vasu V., Iyakutti K., Experimental investigation of hydrogen storage in single walled carbon nanotubes functionalized with borane. International Journal of Hydrogen Energy. 36 (2011) 3574-9.Search in Google Scholar

21. Rashidi A.M., Nouralishahi A., Khodadadi A.A., Mortazavi Y., Karimi A., Kashefi K., Modification of single wall carbon nanotubes (SWNT) for hydrogen storage. International of Hydrogen Energy. 35 (2010) 9489-9495.Search in Google Scholar

22. Mosquera E., Diaz-Droguett D.E., Carvajal N., Roble M., Morel M., Espinoza R., Characterization and hydrogen storage in multi-walled carbon nanotubes grown by aerosol-assisted CVD method. Diamond and Related Materials. 43 (2014) 66-71.Search in Google Scholar

23. Lee S., Park S., Influence of the pore size in multi-walled carbon nanotubes on the hydrogen storage behaviors. Journal of Solid State Chemistry. 194 (2012) 307-312.Search in Google Scholar

24. Barghi S.H., Tsotsis T.T., Sahimi M., Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes. International Journal of Hydrogen Energy. 39 (2014) 1390-1397.Search in Google Scholar

25. Lin K., Mai Y., Li S., Shu C., Wang C., Characterization and hydrogen storage of surface-modified multiwalled carbon nanotubes for fuel cell application. Journal of Nanomaterials. 939683 (2012) 1-12.Search in Google Scholar

26. Rakhia R.B., Sethupathib K., Ramaprabhua S., Synthesis and hydrogen storage properties of carbon nanotubes. International Journal of Hydrogen Energy. 33 (2008) 381-386.Search in Google Scholar

27. Karatepe N., Özyuğuran A., Yavuz R., Karbon yapılı malzemelerin hidrojen depolanmasında kullanımı. Dünya Enerji Konseyi Türk Milli Komitesi Türkiye 10. Enerji Kongresi. (2006) 407-416.Search in Google Scholar

28. Kidnay A.J., Hiza M.J., High pressure adsorption isotherms of neon, hydrogen, and helium at 76°. Advances in Cryogenic Engineering. 12 (1966) 730-740.Search in Google Scholar

29. Jimenez V., Sanchez P., Diaz J.A., Valverde J.L., Romero A., Hydrogen storage capacity on different carbon materials. Chemical Physics Letters. 485 (2010) 152-155.Search in Google Scholar

30. Jorda-Beneyto M., Suarez-Garcia F., Lozano-Castello D., Cazorla-Amoros D., Linares-Solano A., Hyrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon. 45 2 (2007) 293-303.Search in Google Scholar

31. Akasaka H., Takahata T., Toda I., Ono H., Ohshio S., Himeno S., Kokubu T., Saitoh, H., Hydrogen storage ability of porous carbon material fabricated from coffee bean wastes. International Journal of Hydrogen Energy. 36 1 (2011) 580-585.Search in Google Scholar

32. Chang Y.M., Tsai W.N., Li M.H., Characterization of activated carbon prepared from chlorella-based algal residue. Bioresource Technology. 184 (2015) 344–348.Search in Google Scholar

33. Tekin N., Kara A., Beyaz S.K., Şimşek E., Çakmak G., Güney H.Y., Lamari F.D., Solubility and electrical properties of multiwalled carbon nanotubes/poly(1-vinyl-1-2-4-triazole) composite via in situ functionalization. Polymer-Plastics Technology and Engineering. 53 (2014) 1-11.Search in Google Scholar

34. Atkinson K., Roth S., Hirscher M., Grünwald W., Carbon nanostructures: An efficient hydrogen storage medium for fuel cells. Fuel Cells Bulletin. 4 38 (2001) 9-12.Search in Google Scholar

35. Hirscher M., Becher M., Haluska M., Quintel A., Skakalova V., Choi Y.M., Dettlaff-Weglikowska U., Roth S., Stepanek I., Bernier P., Leonhardt A., Fink J., Hydrogen storage in carbon nanostructures. Journal of Alloys and Compounds. (2002) 330-332, 654-658.10.1016/S0925-8388(01)01643-7Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials