Cite

1. Bair J., Asle Zaeem M., Tonks M.: A review on hydride precipitation in zirconium alloys. J. Nucl. Mater. 466 (2015) 12–20.Search in Google Scholar

2. Suman S., Khan M.K., Pathak M., Singh R.N., Chakravartty J.K.: Hydrogen in Zircaloy: Mechanism and its impacts. Intl. J. Hydrogen Energy 40 (2015) 5976–5994.10.1016/j.ijhydene.2015.03.049Search in Google Scholar

3. Zielinski A., Sobieszczyk S.: Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications. Intl. J. Hydrogen Energy 36 (2011) 8619–8629.Search in Google Scholar

4. Baek J.H., Jeong Y.H.: Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation. J. Nucl. Mater. 372 (2008) 152–159.Search in Google Scholar

5. Szoka A., Gajowiec G., Zieliński A., Serbinski W., Olive J.-M., Ossowska A.: Hydrogen degradation of pre-oxidixed zirconium alloys, Adv. Mater. Sci. 17 (2017) 5–21.Search in Google Scholar

6. Couet A., Motta A.T., Comstock R.J.: Hydrogen pickup measurements in zirconium alloys: Relation to oxidation kinetics, J. Nucl. Mater. 451 (2014) 1–13.Search in Google Scholar

7. Fernández G.E., Meyer G., Peretti H.A.: Analysis of the hydride formation kinetics of Zry-4, J. Alloys Compd. 330–332 (2002) 483–487.Search in Google Scholar

8. Kim Y.S., Ahn S.B., Cheong Y.M.: Precipitation of crack tip hydrides in zirconium alloys. J. Alloys Compd.. 429 (2007) 221–226.Search in Google Scholar

9. Cox B.: Hydrogen uptake during oxidation of zirconium alloys. J. Alloys Compd. 256 (1997) 244–246.Search in Google Scholar

10. Elmoselhi M.B.: Hydrogen uptake by oxidized zirconium alloys. J. Alloys Compd. 231 (1995) 716–721.Search in Google Scholar

11. Khatamian D., Ling V.C.: Hydrogen solubility limits in α- and β-zirconium. J. Alloys Compd. 253–254 (1997) 162–166.Search in Google Scholar

12. Chen W., Wang L., Lu S.: Influence of oxide layer on hydrogen desorption from zirconium hydride. J. Alloys Compd. 469 (2009) 142–145.Search in Google Scholar

13. Yamanaka S., Nishizaki T., Uno M., Katsura M.: Hydrogen dissolution into zirconium oxide. J. Alloys Compd. 293 (1999) 38–41.Search in Google Scholar

14. Allen T.R., Konings R.J.M., Motta A.T.: Corrosion of Zirconium Alloys, 1st ed., Elsevier Inc., 2012.10.1016/B978-0-08-056033-5.00063-XSearch in Google Scholar

15. Khatamian D.: Solubility and partitioning of hydrogen in metastable Zr-based alloys used in the nuclear industry. J. Alloys Compd. 293 (1999) 893–899.Search in Google Scholar

16. Cox B.: Hydrogen trapping by oxygen and dislocations in zirconium alloys. J. Alloys Compd. 256 (1997) L4–L7.Search in Google Scholar

17. Giroldi J.P., Vizcaíno P., Flores A.V., Banchik A.D.: Hydrogen terminal solid solubility determinations in Zr-2.5Nb pressure tube microstructure in an extended concentration range. J. Alloys Compd. 474 (2009) 140–146.Search in Google Scholar

18. Singh R.N., Mukherjee S., Gupta A., Banerjee S.: Terminal solid solubility of hydrogen in Zr-alloy pressure tube materials. J. Alloys Compd. 389 (2005) 102–112.Search in Google Scholar

19. Roustila A., Chêne J., Séverac C.: XPS study of hydrogen and oxygen interactions on the surface of the NiZr intermetallic compound. Intl. J. Hydrogen Energy 32 (2007) 5026–5032.Search in Google Scholar

20. Lee K.W., Hong S.I.: Zirconium hydrides and their effect on the circumferential mechanical properties of Zr-Sn-Fe-Nb tubes. J. Alloys Compd. 346 (2002) 302–307.Search in Google Scholar

21. Steinbrück M., Bottcher M.: Air oxidation of Zircaloy-4, M5® and ZIRLOTM cladding alloys at high temperatures. J. Nucl. Mater. 414 (2011) 276–285.Search in Google Scholar

22. Bertolino G., Meyer G., Perez Ipiña J., :n situ crack growth observation and fracture toughness measurement of hydrogen charged Zircaloy-4. J. Nucl. Mater. 322 (2003) 57–65.Search in Google Scholar

23. Bertolino G., Meyer G., Perez Ipiña J.: Effects of hydrogen content and temperature on fracture toughness of Zircaloy-4. J. Nucl. Mater. 320 (2003) 272–279.Search in Google Scholar

24. Bertolino G., Meyer G., Perez Ipia J.: Degradation of the mechanical properties of Zircaloy-4 due to hydrogen embrittlement. J. Alloys Compd. 330–332 (2002) 408–413.Search in Google Scholar

25. Hong S.I., Lee K.W., Kim K.T.: Effect of the circumferential hydrides on the deformation and fracture of Zircaloy cladding tubes. J. Nucl. Mater. 303 (2002) 169–176.Search in Google Scholar

26. Rajasekhara S., Kotula P.G., Enos D.G., Doyle B.L., Clark B.G.: Influence of Zircaloy cladding composition on hydride formation during aqueous hydrogen charging. J. Nucl. Mater. 489 (2017) 222-228.Search in Google Scholar

27. Zieliński A., Cymann A., Guminski A., Szoka A., Gajowiec G.: Influence of high temperature oxidation on hydrogen absorption and degradation of Zircaloy-2 and Zr 700 alloys. High Temp. Mater. Techn. (2018), to be published.10.1515/htmp-2017-0074Search in Google Scholar

28. Blackmur M.S., Robson J.D., Preuss M., Zanelatto O., Cernik R.J., Shi S.-Q., Ribeiro F., Andrieux J.: Zirconium hydride precipitation kinetics in Zircaloy-4 observed with synchrotron X-ray diffraction. J. Nucl. Mater. 464 (2015) 160-169.Search in Google Scholar

29. Burr P.A., Murphy S.T., Lumley S.C., Wenman M.R., Grimes R.W.: Hydrogen solubility in zirconium intermetallic second phase particles. J. Nucl. Mater. 443 (2013) 502-506.Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials