Open Access

Synthesis, Characterization and Their Antimicrobial Activities of Boron Oxide/Poly(Acrylic Acid) Nanocomposites: Thermal and Antimicrobial Properties


Cite

1. Thomas V., Yallapu M.M., Sreedhar B., Bajpai S.K., A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. J. Colloid. Interface Sci., 315 (2007), 389–395.Search in Google Scholar

2. Turhan Y., Alp Z.G., Alkan M., Doğan M., Preparation and characterization of poly(vinylalcohol)/modified bentonite nanocomposites. Microporous and Mesoporous Mater., 174 (2013), 144–153.10.1016/j.micromeso.2013.03.002Search in Google Scholar

3. Hojjati B., Sui R., Charpentier P.A., Synthesis of TiO2/PAA nanocomposite by RAFT polymerization. Polymer, 48 (2007), 5850-5858.Search in Google Scholar

4. Wisniewska M., Nosal-Wiercinska A., Dabrowska I., Szewczuk-Karpisz K., Effect of the solid pore size on the structure of polymer film at the metal oxide/polyacrylic acid solution interface – Temperature impact. Microporous and Mesoporous Mater., 175 (2013), 92–98.Search in Google Scholar

5. Bajpai M., Bajpai S.K., Gautam D. Investigation of regenerated cellulose/poly(acrylic acid) composite films for potential wound healing applications: A preliminary study. J. Appl. Chem., (2014), Article ID 325627.10.1155/2014/325627Search in Google Scholar

6. Hu H., Campos J., Nair P.K., Electrically conductive CuS–poly(acrylic acid) composite coatings. J. Mater. Res., 11(3) (1996), 739-745.10.1557/JMR.1996.0089Search in Google Scholar

7. Zhang S., Zhou Y.F., Nie W.Y., Song L.Y., Preparation of Fe3O4/chitosan/poly(acrylic acid) composite particles and its application in adsorbing copper ion (II). Cellulose, 19 (2012), 2081–2091.Search in Google Scholar

8. Lecerf N., Mathur S., Shen H., Veith M., Hufner S., Chemical vapour and sol-gel syntheses of nano-composites and -ceramics using metal-organic precursors. Scr. Mater., 44(8-9) (2001), 2157-2160.10.1016/S1359-6462(01)00913-7Search in Google Scholar

9. Kunitake N., Fujikawa S., Nanocopying as a means of 3D nanofabrication: scope and prospects. Aust J Chem., 56(10) (2003), 1001-1003.10.1071/CH03129Search in Google Scholar

10. Lee T.W., Park O.O., Yoon J., Kim J.J., Polymer-layered silica nanocomposite light emitting devices. Adv. Mater. 13 (2001), 211-213.Search in Google Scholar

11. McEuen P.L., Bockrath M., Cobden D.H., Lu J.G., Nanotechnology: principles and fundamentals. Microelectron Eng., 47(4) (1999), 417-420.10.1016/S0167-9317(99)00248-8Search in Google Scholar

12. Rouhi J., Mahmud S., Naderi N., Raymond C.H., Mahmood M.R., Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Res. Lett., 8 (2013), 364.10.1186/1556-276X-8-364376573223981366Search in Google Scholar

13. Alizadeh M., Sharifianjazi F., Haghshenasjazi E., Aghakhani M., Rajabi L., Production of nanosized boron oxide powder by high-energy ball milling. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45 (2015), 11–14.10.1080/15533174.2013.797438Search in Google Scholar

14. Pittoni P.G., Chang Y.Y., Lin S.Y., Interpretation of the peculiar temperature dependence of surface tension for boron trioxide. J. Taiwan. Inst. Chem. Eng., 43 (2012), 852–859.Search in Google Scholar

15. Woods W.G., An Introduction to boron: history, sources, uses, and chemistry. Environ. Health Perspect., 102 (1994), 5-11.Search in Google Scholar

16. Turhan Y., Dogan M., Alkan M., Poly(vinyl chloride)/kaolinite nanocomposites: characterization and thermal and optical properties. Ind. Eng. Chem. Res., 49 (2010), 1503–1513.Search in Google Scholar

17. Töre İ., Ay N., The Characterization and production of amorphous boron oxide. 2. International Boron Congress. September 23-25, Eskişehir/TURKEY.Search in Google Scholar

18. Moon O.M., Kang B.C., Lee S.B., Boo J.H., Temperature effect on structural properties of boron oxide thin films deposited by MOCVD method. Thin Solid Films, 464–465 (2004), 164–169.10.1016/j.tsf.2004.05.107Search in Google Scholar

19. Moharram M.A., Rabie S.M., El-Gendy H.M., IR spectra of -irradiated PAA–PAAm complex. J Appl. Polym. Sci., 85(8) (2002), 1619–1623.10.1002/app.10702Search in Google Scholar

20. Mohammed A.M., Radia N.D., Controlled release from crosslinked polyacrylic acid as drug delivery theophylline. Irq. Nat. J. Chem., 45 (2012), 67-85.Search in Google Scholar

21. De la Fuente J.L., Wilhelm M., Spiess H.W., Madruga E.L., Fernandez-Garcia M., Cerrada M.L., Thermal, morphological and rheological characterization of poly(acrylic acid-g-styrene) amphiphilic graft copolymers. Polymer, 46 (2005), 4544–4553.Search in Google Scholar

22. McGaugh M.C., Kottle S., The thermal degradation of poly(acrylic acid). J. Polym. Sci. B., 5(9) (1967), 817–820.10.1002/pol.1967.110050916Search in Google Scholar

23. Dubinsky S., Grader G.S., Shter G.E., Silverstein M.S., Thermal degradation of poly(acrylic acid) containing copper nitrate. Polym. Degrad. Stab., 86 (2004), 171-178.Search in Google Scholar

24. Kızılduman B.K., Alkan M., Doğan M., Turhan Y., Al-pillared-montmorillonite (AlPMt)/Poly(methylmethacrylate)(PMMA) nanocomposites: the effects of solvent types and synthesis methods. Adv. Mat. Sci., 17(3) (2017), 5-23.10.1515/adms-2017-0012Search in Google Scholar

25. Kausar A., Ullah W., Muhammad B., Siddiq M., Novel mechanically stable, heat resistant and nonflammable functionalized polystyrene/expanded graphite nanocomposites. Adv. Mat. Sci., 14(4) (2014) 61-74.10.2478/adms-2014-0022Search in Google Scholar

26. Ray S.S., Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci., 28 (2003), 1539–1641.Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials