Open Access

The Properties of Nanosilver – Doped Nanohydroxyapatite Coating On the Ti13zr13Nb Alloy

   | Aug 01, 2017

Cite

1. Zielinski A., Sobieszczyk S., Seramak T., Serbinski W., Swieczko-Zurek B., Ossowska A., Biocompatibility and Bioactivity of Load-Bearing Metallic Implants, Advances in Materials Sciences. 10 (2011) 21-31.Search in Google Scholar

2. Bartmanski M., Berk A., Wojcik A., The Determinants of Morphology and Properties of the Nanohydroxyapatite Coating Deposited on the Ti13Zr13Nb Alloy by Electrophoretic Technique, Advances in Materials Science. 16 (2016) 56-66.10.1515/adms-2016-0017Search in Google Scholar

3. Drevet R., Ben Jaber N., Fauré J., Tara A., Ben Cheikh Larbi A., Benhayoune H., Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates, Surface and Coatings Technology. 301 (2015) 94-99.10.1016/j.surfcoat.2015.12.058Search in Google Scholar

4. Kwok C.T., Wong P.K., Cheng F.T., Man H.C., Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition, Applied Surface Science. 255 (2009) 6736-6744.10.1016/j.apsusc.2009.02.086Search in Google Scholar

5. Strakowska P., Beutner R., Gnyba M., Zielinski A., Scharnweber D., Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results, Materials Science and Engineering C. 59 (2016) 624-635.10.1016/j.msec.2015.10.06326652416Search in Google Scholar

6. Huang Y., Hao M., Nian X., Qiao H., Zhang H., Zhang X., Song G., Guo J., Pang X., Zhang H., Strontium and copper co-substituted hydroxyapatite-based coatings with improved antibacterial activity and cytocompatibility fabricated by electrodeposition, Ceramics International. 42 (2016) 11876-11888.10.1016/j.ceramint.2016.04.110Search in Google Scholar

7. Pylypchuk I.V., Petranovskaya A.L., Gorbyk P.P., Korduban A.M., Markovsky P.E., Ivasishin O.M., Biomimetic Hydroxyapatite Growth on Functionalized Surfaces of Ti-6Al-4V and Ti-Zr-Nb Alloys, Nanoscale Research Letters. 10 (2015) 1-8.10.1186/s11671-015-1017-x454607226297184Search in Google Scholar

8. Ossowska A., Sobieszczyk S., Supernak M., Zielinski A., Morphology and properties of nanotubular oxide layer on the “Ti-13Zr-13Nb” alloy, Surface and Coatings Technology. 258 (2014) 1239-1248.10.1016/j.surfcoat.2014.06.054Search in Google Scholar

9. Delgado-Alvarado C., Sundaram P.A., Corrosion evaluation of Ti-48Al-2Cr-2Nb (at.%) in Ringer’s solution, Acta Biomaterialia. 2 (2006) 701-708.10.1016/j.actbio.2006.05.01216887397Search in Google Scholar

10. Narayanan R., Seshadri S.K., Synthesis and corrosion of functionally gradient TiO2 and hydroxyapatite coatings on Ti-6Al-4V, Materials Chemistry and Physics. 106 (2007) 406-411.10.1016/j.matchemphys.2007.06.026Search in Google Scholar

11. Araghi A., Hadianfard M.J., Fabrication and characterization of functionally graded hydroxyapatite/TiO2 multilayer coating on Ti-6Al-4V titanium alloy for biomedical applications, Ceramics International. 41 (2015) 12668-12679.10.1016/j.ceramint.2015.06.098Search in Google Scholar

12. Geetha M., Singh A.K., Asokamani R., Gogia A.K., Ti based biomaterials, the ultimate choice for orthopaedic implants - A review, Progress in Materials Science. 54 (2009) 397-425.10.1016/j.pmatsci.2008.06.004Search in Google Scholar

13. Manoj Kumar R., Kuntal K.K., Singh S., Gupta P., Bhushan B., Gopinath P., Lahiri D., Electrophoretic deposition of hydroxyapatite coating on Mg-3Zn alloy for orthopaedic application, Surface and Coatings Technology. 287 (2016) 82-92.10.1016/j.surfcoat.2015.12.086Search in Google Scholar

14. Majkowska B., Jazdzewska M., Wolowiec E., Piekoszewski W., Klimek L., Zielinski A., The Possibility Of Use Of Laser-Modified Ti6Al4V Alloy In Friction Pairs In Endoprostheses, Archives of Metallurgy and Materials. 60 (2015) 6-9.10.1515/amm-2015-0202Search in Google Scholar

15. Dudek K., Goryczka T., Electrophoretic deposition and characterization of thin hydroxyapatite coatings formed on the surface of NiTi shape memory alloy, Ceramics International. 42 (2016) 19124-19132.10.1016/j.ceramint.2016.09.074Search in Google Scholar

16. Boccaccini R., Keim S., Ma R., Li Y., Zhitomirsky I., Electrophoretic deposition of biomaterials., Journal of the Royal Society, Interface / the Royal Society. 7 (2010) 581-613.Search in Google Scholar

17. Xue W., Tao S., Liu X., Zheng Z., Ding C., In vivo evaluation of plasma sprayed hydroxyapatite coatings having different crystallinity, Biomaterials. 25 (2004) 415-421.10.1016/S0142-9612(03)00545-3Search in Google Scholar

18. Asri R.I.M., Harun W.S.W., Hassan M.A., Ghani S.A.C., Buyong Z., A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals, Journal of the Mechanical Behavior of Biomedical Materials. 57 (2016) 95-108.Search in Google Scholar

19. Kobayashi Y., Shirochi T., Yasuda Y., Morita T., Synthesis of silver/copper nanoparticles and their metal-metal bonding property, Journal of Mining and Metallurgy, Section B: Metallurgy. 49 (2013) 65-70.Search in Google Scholar

20. Chen Y., Zheng X., Xie Y., Ji H., Ding C., Li H., Dai K., Silver release from silver-containing hydroxyapatite coatings, Surface and Coatings Technology. 205 (2010) 1892-1896.10.1016/j.surfcoat.2010.08.073Search in Google Scholar

21. Zhang W., Chu P.K., Enhancement of antibacterial properties and biocompatibility of polyethylene by silver and copper plasma immersion ion implantation, Surface and Coatings Technology. 203 (2008) 909-912.10.1016/j.surfcoat.2008.08.023Search in Google Scholar

22. Stanić V., Janaćković D., Dimitrijević S., Tanasković S.B., Mitrić M., Pavlović M.S., Krstić A., Jovanović D., Raičević S., Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering, Applied Surface Science. 257 (2011) 4510-4518.10.1016/j.apsusc.2010.12.113Search in Google Scholar

23. Mohan S., Oluwafemi O.S., Songca S.P, Jayachandran V.P., Rouxel D., Joubert O., Kalarikkal N., Thomas S., Synthesis, antibacterial, cytotoxicity and sensing properties of starch-capped silver nanoparticles, Journal of Molecular Liquids. 213 (2016) 75-81.10.1016/j.molliq.2015.11.010Search in Google Scholar

24. Mirzaee M., Vaezi M., Palizdar Y., Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid, Materials Science and Engineering C. 69 (2016) 675-684.10.1016/j.msec.2016.07.05727612761Search in Google Scholar

25. Huang Y., Zhang X., Zhang H., Qiao H., Zhang X., Jia T., Han S., Gao Y., Xiao H., Yang H., Fabrication of silver- and strontium-doped hydroxyapatite/TiO2 nanotube bilayer coatings for enhancing bactericidal effect and osteoinductivity, Ceramics International. 43 (2017) 992-1007.10.1016/j.ceramint.2016.10.031Search in Google Scholar

26. Mohan L., Durgalakshmi D., Geetha M., Sankara Narayanan T.S.N., Asokamani R., Electrophoretic deposition of nanocomposite (HAp + TiO 2) on titanium alloy for biomedical applications, Ceramics International. 38 (2012) 3435-3443.10.1016/j.ceramint.2011.12.056Search in Google Scholar

27. Loch J., Krawiec H., Corrosion behaviour of cobalt alloys in artifical salvia solution, Archives of Foundry Engineering. 13 (2013) 101-106.10.2478/afe-2013-0069Search in Google Scholar

28. Farrokhi-Rad M., Shahrabi T., Effect of suspension medium on the electrophoretic deposition of hydroxyapatite nanoparticles and properties of obtained coatings, Ceramics International. 40 (2014) 3031-3039.10.1016/j.ceramint.2013.10.004Search in Google Scholar

29. Abdeltawab A.A., Shoeib M.A., Mohamed S.G., Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions, Surface and Coatings Technology. 206 (2011) 43-50.10.1016/j.surfcoat.2011.06.034Search in Google Scholar

30. Yan Y., Zhang X., Huang Y., Ding Q., Pang X., Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium, Applied Surface Science. 314 (2014) 348-357.10.1016/j.apsusc.2014.07.027Search in Google Scholar

31. Clèries L., Fernández-Pradas J., Morenza J., Behavior in simulated body fluid of calcium phosphate coatings obtained by laser ablation, Biomaterials. 21 (2000) 1861-1865.10.1016/S0142-9612(00)00060-0Search in Google Scholar

32. Huang Y., Hao M., Nian X., Qiao H., Zhang X., Zhang X., Song G., Guo J., Pang X., Zhang H., Strontium and copper co-substituted hydroxyapatite-based coatings with improved antibacterial activity and cytocompatibility fabricated by electrodeposition, Ceramics International. 42 (2016) 11876-11888.10.1016/j.ceramint.2016.04.110Search in Google Scholar

33. Heise S., Höhlinger M., Torres Y., José J., Palacio P., Antonio J., Ortiz R., Wagener V., Virtanen S., Boccaccini A.R., Electrochimica Acta Electrophoretic deposition and characterization of chitosan / bioactive glass composite coatings on Mg alloy substrates, Electrochimica Acta. 232 (2017) 456-464.10.1016/j.electacta.2017.02.081Search in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials