Open Access

Identification of Cows Susceptible to Mastitis based on Selected Genotypes by Using Decision Trees and A Generalized Linear Model


Cite

1. Heald CW, Kim T, Sischo WM, Cooper JB, Wolfgang DR: A computerized mastitis decision aid using farm-based records: an artificial neural network approach. J Dairy Sci 2000, 83:711-720.10.3168/jds.S0022-0302(00)74933-2Search in Google Scholar

2. Siebert LJ: Genome wide association study identifies loci sssociated with mastitis antibiotic therapy phenotypes following experimental challenge with Streptococcus Uberis. Plant and Animal Genome XXIII. San Diego, CA. 2015.Search in Google Scholar

3. Viguier C, Arora S, Gilmartin N, Welbeck K, O’kennedy R: Mastitis detection: current trends and future perspectives. Trends Biotechnol 2009, 27:486-493.10.1016/j.tibtech.2009.05.00419616330Search in Google Scholar

4. Mein G, Reinemann D, Schuring N, I O: R-MM-1: milking machines and mastitis risk – a storm in a teatcup. 43rd National Mastitis Council Annual Meeting. Charlotte, NC. 2004.Search in Google Scholar

5. Sender G, Korwin-Kossakowska A, Hameid KGA, Prusak B: Ocena wpływu polimorfizmu wybranych genów na występowanie mastitis u krów. Med Weter 2006, 62:563-565.Search in Google Scholar

6. Sordillo LM: Factors affecting mammary gland immunity and mastitis susceptibility. Livestock Production Science 2005, 98:89-99.10.1016/j.livprodsci.2005.10.017Search in Google Scholar

7. Bruckmaier RM, Ontsouka CE, Blum JW: Fractionized milk composition in dairy cows with subclinical mastitis. Vet Med 2004, 49:283-290.10.17221/5706-VETMEDSearch in Google Scholar

8. Cavero D, Tölle KH, Rave G, Buxadé C, Krieter J: Analysing serial data for mastitis detection by means of local regression. Livest Sci 2007, 110:101-110.10.1016/j.livsci.2006.10.006Search in Google Scholar

9. Halasa T, Huijps K, Østerås O, Hogeveen H: Economic effects of bovine mastitis and mastitis management: A review. Vet Quart 2007, 29:18-31.10.1080/01652176.2007.969522417471788Search in Google Scholar

10. Schabauer L, Wenning M, Huber I, Ehling-Schulz M: Novel physico-chemical diagnostic tools for high throughput identification of bovine mastitis associated gram-positive, catalase-negative cocci. BMC Vet Res 2014, 10:1-11.10.1186/1746-6148-10-156410504925015262Search in Google Scholar

11. Makovickỳ P, Makovickỳ P, Nagy M, Rimárová K, & Diabelková J: Genetic parameters for somatic cell count, logscc and somatic cell score of breeds: Improved Valachian, Tsigai, Lacaune and their Crosses. Acta Vet-Beograd 2014, 64:386–396.10.2478/acve-2014-0037Search in Google Scholar

12. Liu X, Wang Y, Tian Y, Yu Y, Gao M, Hu G, Su F, Pan S, Luo Y, Guo Z, Quan F, Zhang Y: Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proc R Soc B 2014, 281:20133368.10.1098/rspb.2013.3368402740124552841Search in Google Scholar

13. Barłowska J, Litwińczuk Z, Brodziak A, Król J: Somatic cell count as the factor conditioning productivity of various breeds of cows and technological suitability of milk. In: Dairy Cows: Reproduction, Nutritional Management and Diseases. New York: Nova Science Publishers; 2013, 91-126.Search in Google Scholar

14. Milanov D, Prunić B, Velhner M, Todorović D, Polaček V: Investigation of biofilm formation and phylogenetic typing of Escherichia coli strains isolated from milk of cows with mastitis. Acta Vet-Beograd 2015, 65:202–216.10.1515/acve-2015-0017Search in Google Scholar

15. Bukhari S, Das AK, Kumar N, Raghuwanshi P, Taggar RK, Chakraborty D, Kumar D, Vohra V, Gupta P: Genetic polymorphism of promoter region of lactoferrin gene and its association with mastitis resistance in Jersey crossbred cattle. Indian J Anim Res 2015, 49:165-167.10.5958/0976-0555.2015.00109.0Search in Google Scholar

16. Singh AP, Ramesha KP, Isloor S, Divya P, Rao A, Basavaraju M, Das DN, Munde U: Single nucleotide polymorphisms in lactoferrin gene are associated with lactoferrin content in milk and somatic cell count in Deoni (Bos indicus) cows. Pak Vet J 2015, 35:303-308.Search in Google Scholar

17. Rajić Savić N, Katić V, Velebit B: Characteristics of coagulase positive staphylococci isolated from milk in cases of subclinical mastitis. Acta Vet-Beograd 2014, 64:115–123.10.2478/acve-2014-0012Search in Google Scholar

18. Ranjan S, Bhushan B, Panigrahi M, Kumar A, Deb R, Kumar P, Sharma D: Association and expression analysis of single nucleotide polymorphisms of partial tumor necrosis factor alpha gene with mastitis in crossbred cattle. Anim Biot 2015, 26:98-104.10.1080/10495398.2014.92958225380461Search in Google Scholar

19. Wojdak-Maksymiec K, Szyda J, Strabel T: Parity-dependent association between TNF-alpha and LTF gene polymorphisms and clinical mastitis in dairy cattle. BMC Vet Res 2013, 9:114.10.1186/1746-6148-9-114368288323758855Search in Google Scholar

20. Kościuczuk EM, Lisowski P, Jarczak J, Krzyżewski J, Zwierzchowski L, Bagnicka E: Expression patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative Staphylococci. BMC Vet Res 2014, 10:246.10.1186/s12917-014-0246-z419440325286984Search in Google Scholar

21. Meade KG, Cormican P, Narciandi F, Lloyd A, O’farrelly C: Bovine β-defensin gene family: opportunities to improve animal health? Physiol Genomics 2014, 46:17-28.10.1152/physiolgenomics.00085.201324220329Search in Google Scholar

22. Piwczyński D: Using classification trees in statistical analysis of discrete sheep reproduction traits. J Cent Eur Agric 2009, 10:303-309.Search in Google Scholar

23. Piwczyński D, Nogalski Z, Sitkowska B: Statistical modeling of calving ease and stillbirths in dairy cattle using the classification tree technique. Livest Sci 2013, 154:19-27.10.1016/j.livsci.2013.02.013Search in Google Scholar

24. Piwczyński D, Sitkowska B: Statistical modelling of somatic cell counts using the classification tree technique. Arch Tierz 2012, 55:332-345.10.5194/aab-55-332-2012Search in Google Scholar

25. Piwczyński D, Sitkowska B, Wiśniewska E: Application of classification trees and logistic regression to determine factors responsible for lamb mortality. Small Ruminant Res 2012, 103:225-231.10.1016/j.smallrumres.2011.09.014Search in Google Scholar

26. Zia H, Harris N, Merrett G, Rivers M: Predicting discharge using a low complexity machine learning model. Comput Electron Agric 2015, 118:350-360.10.1016/j.compag.2015.09.012Search in Google Scholar

27. Brillante L, Gaiotti F, Lovat L, Vincenzi S, Giacosa S, Torchio F, Segade SR, Rolle L, Tomasi D: Investigating the use of gradient boosting machine, random forest and their ensemble to predict skin flavonoid content from berry physical-mechanical characteristics in wine grapes. Comput Electron Agric 2015, 117:186-193.10.1016/j.compag.2015.07.017Search in Google Scholar

28. Hill MG, Connolly PG, Reutemann P, Fletcher D: The use of data mining to assist crop protection decisions on kiwifruit in New Zealand. Comput Electron Agric 2014, 108:250-257.10.1016/j.compag.2014.08.011Search in Google Scholar

29. Pulido-Calvo I, Gutiérrez-Estrada JC, Díaz-Rubio E, De La Rosa I: Assisted management of water exchange in traditional semi-intensive aquaculture ponds. Comput Electron Agric 2014, 101:128-134.10.1016/j.compag.2013.12.016Search in Google Scholar

30. Wojdak-Maksymiec K, Strabel T, Szyda J, Mikolajczyk K: Clinical mastitis and combined defensin polymorphism in dairy cattle. J Anim Vet Adv 2012, 11:2230-2237.10.3923/javaa.2012.2230.2237Search in Google Scholar

31. Cornou C, Lundbye-Christensen S: Modeling of sows diurnal activity pattern and detection of parturition using acceleration measurements. Comput Electron Agric 2012, 80:97-104.10.1016/j.compag.2011.11.001Search in Google Scholar

32. Statsoft, Inc: Electronic Statistics Textbook. Tulsa, OK: StatSoft; 2013.Search in Google Scholar

33. Ariana DP, Lu R, Guyer DE: Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers. Comput Electron Agric 2006, 53:60-70.10.1016/j.compag.2006.04.001Search in Google Scholar

34. Cavero D, Tölle KH, Henze C, Buxadé C, Krieter J : Mastitis detection in dairy cows by application of neural networks. Livest Sci 2008, 114:280-286.10.1016/j.livsci.2007.05.012Search in Google Scholar

35. Krieter J, Cavero D, Henze C: Mastitis detection in dairy cows using neural networks. Agrarinformatik im Spannungsfeld zwischen Regionalisierung und globalen Wertschöpfungsketten. Stuttgart, Germany. 2007.Search in Google Scholar

36. Montgomery ME, White ME, Martin SW: A comparison of discriminant analysis and logistic regression for the prediction of coliform mastitis in dairy cows. Can J Vet Res 1987, 51:495.Search in Google Scholar

37. Nielen M, Schukken YH, Brand A, Haring S, Ferwerda-Van Zonneveld RT: Comparison of analysis techniques for on-line detection of clinical mastitis. J Dairy Sci 1995, 78:1050-1061.10.3168/jds.S0022-0302(95)76721-2Search in Google Scholar

38. Nielen M, Spigt MH, Schukken YH, Deluyker HA, Maatje K, Brand A: Application of a neural network to analyse on-line milking parlour data for the detection of clinical mastitis in dairy cows. Prev Vet Med 1995, 22:15-28.10.1016/0167-5877(94)00405-8Search in Google Scholar

39. Yang XZ, Lacroix R, Wade KM: Neural detection of mastitis from dairy herd improvement records. T ASAE 1999, 42:1063-1071.10.13031/2013.13254Search in Google Scholar

40. Chagunda MGG, Friggens NC, Rasmussen MD, Larsen T: A model for detection of individual cow mastitis based on an indicator measured in milk. J Dairy Sci 2006, 89:2980-2998.10.3168/jds.S0022-0302(06)72571-1Search in Google Scholar

41. Sun Z, Samarasinghe S, Jago J: Detection of mastitis and its stage of progression by automatic milking systems using artificial neural networks. J. Dairy Res 2010, 77:168-175.10.1017/S002202990999055020030900Search in Google Scholar

42. Sørensen LP, Bjerring M, Løvendahl P: Monitoring individual cow udder health in automated milking systems using online somatic cell counts. J Dairy Sci 2016, 99:608-620.10.3168/jds.2014-882326547650Search in Google Scholar

43. Kamphuis C, Mollenhorst H, Feelders A, Pietersma D, Hogeveen H: Decision-tree induction to detect clinical mastitis with automatic milking. Comput Electron Agric 2010, 70:60-68.10.1016/j.compag.2009.08.012Search in Google Scholar

44. Kamphuis C, Mollenhorst H, Heesterbeek JaP, Hogeveen H : Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction. J Dairy Sci 2010, 93:3616-3627.10.3168/jds.2010-322820655431Search in Google Scholar

eISSN:
1820-7448
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Veterinary Medicine