Open Access

Sustained release biodegradable solid lipid microparticles: Formulation, evaluation and statistical optimization by response surface methodology


Cite

1. J. M. Flack and S. A. Nasser, Benefits of once-daily therapies in the treatment of hypertension, Vasc. Health Risk Manag. 7 (2011) 777-787; https://doi.org/10.2147/VHRM.S17207 10.2147/VHRM.S17207325377122241952Search in Google Scholar

2. R. Bodmeier, J. Wang and H. Bhagwatwar, Process and formulation variables in the preparation of wax microparticles by melt dispersion technique for water insoluble drugs, J. Microencapsul. 9 (1992) 89-98; https://doi.org/103109/0265204920902122610.3109/026520492090212261613647Search in Google Scholar

3. R. B. Oliveira, T. L. Nascimento and E. M. Lima, Design and characterization of sustained release ketoprofen entrapped carnauba wax microparticles, Drug Dev. Ind. Pharm. 38 (2012) 1-11; https://doi.org/10.3109/03639045.2011.58743310.3109/03639045.2011.58743321671838Search in Google Scholar

4. C. M. Adeyeye and J. C. Price, Development and evaluation of sustained release ibuprofen-wax microspheres. I. Effect of formulation variables on physical characteristics, Pharm. Res. 8 (1991) 1377-1383; https://doi.org/10.1023/A:101584502211210.1023/A:1015845022112Search in Google Scholar

5. Y. A. Goma, I. A. Darwish, N. A. Boraei and L. K. El-Khordagui, Formulation of wax oxybenzone microparticles using a factorial approach, J. Microencapsul. 27 (2010) 628-639; https://doi.org/10.3109/02652048.2010.50658010.3109/02652048.2010.50658020681744Search in Google Scholar

6. L. M. Van Bortel, F. Fici and F. Mascagni, Efficacy and tolerability of nebivolol compared with other antihypertensive drugs: a meta-analysis, Am. J. Cardiovasc. Drugs 8 (2008) 35-44; https://doi.org/10.2165/00129784-200808010-0000510.2165/00129784-200808010-0000518303936Search in Google Scholar

7. L. A. D. Silva, F. V. Teixeira, R. C. Sepra, N. L. Esteves, R. R. Dos-Santos, E. M. Lima, et al., Evaluation of carvedilol compatibility with lipid excipients for the development of lipid-based drug delivery systems, J. Therm. Anal. Calorim. 123 (2016) 2337-2344; https://doi.org/10.1007/s10973-015-5022-110.1007/s10973-015-5022-1Search in Google Scholar

8. K. Westesen and B. Siekmann, Solid lipid particles, particles of bioactive agents and methods for the manufacture and use thereof, U.S. Pat. 08/226, 471, 12 April 1994; Publication date July 28 (1998) 5785976 A.Search in Google Scholar

9. S. N. Patere, N. S. Desai, A. S. Jain, P. P. Kadam, U. M. Thatta, N. Gogtay, C. J. Kapadia, N. Farah and M. S. Nagarsenker, Compritol® 8 88 ATO, a l ipid e xcipient f or s ustained r elease of h ighly water soluble active formulation, scale-up and IVIVC study, Curr. Drug Deliv. 10 (2013) 548-556; https://doi.org/10.2174/156720181131005000610.2174/156720181131005000623607649Search in Google Scholar

10. M. K. Shah, P. Madan and S. Lin, Preparation, in vitro evaluation and statistical optimization of carvedilol loaded solid lipid nanoparticles for lymphatic absorption via oral administration, Pharm. Dev. Technol. 19 (2014) 475-485; https://doi.org/10.3109/10837450.2013.79516910.3109/10837450.2013.79516923697916Search in Google Scholar

11. M. R. Priya and N. Jeevitha, semi-solid dispersion of carvedilol solid lipid nanoparticles for topical delivery, EJPMR 3 (2016) 231-238.Search in Google Scholar

12. H. M. Aboud, M. H. El Komy, A. A. Ali, S. F. El Menshawe and A. Abdelbary, Development, optimization, and evaluation of carvedilol-loaded solid lipid nanoparticles for intranasal drug delivery, AAPS PharmSciTech. 17 (2016) 1353-1365; https://doi.org/10.1208/s12249-015-0440-810.1208/s12249-015-0440-826743643Search in Google Scholar

13. A. A. Attama, S. Reichl and C. C. Muller-Goymann, Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea, Curr. Eye Res. 34 (2009) 698-705; https://doi.org/10.1080/0271368090301750010.1080/0271368090301750019899997Search in Google Scholar

14. S. N. Patere, C. J. Kapadia and M. S. Nagarsenker, Influence of formulation factors and compression force on release profile of sustained release Metoprolol tablets using Compritol®888ATO as lipid excipient, Indian J. Pharm. Sci. 77 (2015) 620-625; https://doi.org/10.4103/0250-474X.16903010.4103/0250-474X.169030Search in Google Scholar

15. A. Bruzzo, T. Cerchiara, F. Bigucci, M. C. Gallucci and B. Luppi, Mucoadhesive buccal tablets based on chitosan/gelatin microparticles for delivery of propranolol hydrochloride, J. Pharm. Sci. 104 (2015) 4365-4372; https://doi.org/10.1002/jps.2468810.1002/jps.2468826505621Search in Google Scholar

16. S. S. Sule and W. Frishman, Nebivolol: new therapy update, Cardiol Rev. 14 (2006) 2 59-264; https://doi.org/10.1097/01.crd.0000223651.03023.8e10.1097/01.crd.0000223651.03023.8e16924166Search in Google Scholar

17. W. Chaisri, W. E. Hennink, C. Ampasavate and S. Okonogi, Cephalexin microspheres for dairy mastitis: Effect of preparation method and surfactant type on physicochemical properties of the microspheres, AAPS PharmSciTech. 11 (2010) 945-951; https://doi.org/10.1208/s12249-010-9453-510.1208/s12249-010-9453-5290235120509056Search in Google Scholar

18. X. Wu, G. Li and Y. Gao, Optimization of the preparation of nalmefene-loaded sustained-release microspheres using central composite design, Chem. Pharm. Bull. 54 (2006) 977-981; https://doi.org/10.1248/cpb.54.97710.1248/cpb.54.97716819215Search in Google Scholar

19. S. Milak, N. Medlicott and I. G. Tucker, Solid lipid microparticles containing loratadine prepared using a micromixer, J. Microencapsul. 23 (2006) 823-831; https://doi.org/10.1080/0968786060094575010.1080/0968786060094575017390624Search in Google Scholar

20. B. Albertini, N. Passerini, M. L. Gonzalez-Rodriguez, B. Perissutti and L. Rodriguez, Effect of Aerosil on the properties of lipid controlled release microparticles, J. Control. Release 100 (2004) 233-246; https://doi.org/10.1016/j.jconrel.2004.08.01310.1016/j.jconrel.2004.08.01315544871Search in Google Scholar

21. S. Mukherjee, S. Ray and R. S. Thakur, Solid lipid nanoparticles: a modern formulation approach in drug delivery system, Indian J. Pharm. Sci. 71 (2009) 349-358; https://doi.org/10.4103/0250-474X.5728210.4103/0250-474X.57282286580520502539Search in Google Scholar

22. J. Hao, X. Fang, Y. Zhou, J. Wang, F. Guo, F. Li and X. Peng, Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design, Int. J. Nanomedicine. 6 (2011) 683-692; https://doi.org/10.2147/IJN.S1738610.2147/IJN.S17386308431521556343Search in Google Scholar

23. C. Narendra, M. S. Srinath and R. Prakash, Development of a three layered buccal compact containing metoprolol tartrate by statistical optimization technique, Int. J. Pharm. 304 (2005) 102-114; https://doi.org/10.1016/j.ijpharm.2005.07.02110.1016/j.ijpharm.2005.07.02116150561Search in Google Scholar

24. B. C. Nandy and B. Mazumder, Formulation and characterizations of delayed release multi-particulates system of indomethacin: optimization by response surface methodology, Curr. Drug Deliv. 10 (2014) 72-86; https://doi.org/10.2174/15672018109990041Search in Google Scholar

25. D. V. Gowda and H. G. Shivakumar, Preparation and evaluation of waxes/fat microspheres loaded with lithium carbonate for controlled release, Indian J. Pharm. Sci. 69 (2007) 251-256; https://doi.org/10.4103/0250-474X.3315210.4103/0250-474X.33152Search in Google Scholar

26. S. B. Patil and K. K. Sawant, Development, optimization and in vitro evaluation of alginate mucoadhesive microspheres of carvedilol for nasal delivery, J. Microencapsul. 26 (2009) 432-443; https://doi.org/10.1080/0265204080245672610.1080/0265204080245672618932060Search in Google Scholar

27. L. Capretto, S. Mazzitelli and C. Nastruzzi, Design, production and optimization of solid lipid microparticles (SLM) by a coaxial microfluidic device, J. Control. Release 160 (2012) 409-417; https://doi.org/10.1016/j.jconrel.2012.04.01910.1016/j.jconrel.2012.04.01922542700Search in Google Scholar

28. D. Jain and R. Banerjee, Comparison of ciprofloxacin hydrochloride-loaded protein, lipid and chitosan nanoparticles for drug delivery, J. Biomed. Mater. Res. B Appl. Biomater. 86 (2008) 105-112; https://doi.org/10.1002/jbm.b.3099410.1002/jbm.b.3099418098198Search in Google Scholar

29. S. Lacerda, N. Cerize and M. Re, Preparation and characterization of carnauba waxnanostructured lipid carriers containing benzophenone-3, Int. J. Cosmet. Sci. 33 (2011) 312-321; https://doi.org/10.1111/j.1468-2494.2010.00626.x10.1111/j.1468-2494.2010.00626.x21284656Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other