Open Access

Application of instrumented nanoindentation in preformulation studies of pharmaceutical active ingredients and excipients


Cite

1. B. B. Sheth, F. J. Bandelin, and R. F. Shangraw, Tablets, in Pharmaceutical Dosage Forms (Eds. H. A. Lieberman and L. Lachman), 1st ed., Marcel Dekker, New York 1980, pp. 109-185.Search in Google Scholar

2. P. Davies, Oral Solid Dosage Forms, in Pharmaceutical Preformulation and Formulation (Ed. M. Gibson), 2nd ed., Informa Healthcare, Inc., New York 2009, pp. 367-430.Search in Google Scholar

3. R. J. Roberts, Particulate Analysis: Mechanical properties, in Solid State Characterization of Pharmaceuticals (Eds. R. A. Storey and I. Ymen), 1st ed., John Wiley & Sons, Southern Gate UK 2011, pp. 357-369.10.1002/9780470656792.ch10Search in Google Scholar

4. J. Nordstrom, I. Klevan and G. Alderborn, A protocol for the classification of powder compression characteristics, Eur. J. Pharm. Biopharm. 80 (2012) 209-216 DOI: 10.1016/j.ejpb.2011.09.006.10.1016/j.ejpb.2011.09.006Search in Google Scholar

5. G. E. Amidon, P. J. Secreast and D. Mudie, Particle, Powder, and Compact Characterization, in Developing Solid Dosage Forms (Eds. Y. Qiu, Y. Chen and G. G. Z. Zhang), 1st ed., Elsevier, New York 2009, pp. 163-183.10.1016/B978-0-444-53242-8.00008-4Search in Google Scholar

6. C. Sun and D. J. W. Grant, Influence of crystal structure on the tableting properties of sulfamerazine polymorphs, Pharm. Res. 18 (2001) 274-280; DOI: 0724-8741/01/0300-0274.10.1023/A:1011038526805Search in Google Scholar

7. S. Jain, Mechanical properties of powders for compaction and tableting: An overview PSST Vol. 2 (1999) 20-31; DOI: 10.1016/S1461-5347(98)00111-4.10.1016/S1461-5347(98)00111-4Search in Google Scholar

8. D. Singhal and W. Curatolo, Drug polymorphism and dosage form design: a practical perspective, Adv. Drug Deliv. 56 (2004) 335-347; DOI: 10.1016/j.addr.2003.10.008.10.1016/j.addr.2003.10.008Search in Google Scholar

9. S. F. Chow, M. Chen, L. Shi, A. H. L. Chow and C. C. Sun, Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide, Pharm. Res. 29 (2012) 1854-1865; DOI: 10.1007/s11095-012-0709-5.10.1007/s11095-012-0709-5Search in Google Scholar

10. A. Paradkar and P. York, Crystal Engineering and Particle Design for the Powder Compaction Process, in Pharmaceutical Powder Compaction Technology (Ed. M. Celik), 2nd ed., Informa Healthcare, London 2011, pp. 235-252.Search in Google Scholar

11. N. Blagden, M. de Matas, P. T. Gavan and P. York, Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates, Adv. Drug Deliv. 59 (2007) 617-630; DOI: 10.1016/j.addr.2007.05.011.10.1016/j.addr.2007.05.011Search in Google Scholar

12. S. Karki, T. Frišič, L. Fabian, P. R. Laity, G .M. Day and W. Jones, Improving mechanical properties of crystalline solids by cocrystal formation: New compressible forms of paracetamol, Adv. Mater. 21 (2009) 3905-3909; DOI: 10.1002/adma.200900533.10.1002/adma.200900533Search in Google Scholar

13. K. L. Johnson, Contact Mechanics (Ed. K. L. Johnson), 1st ed., Cambridge University Press, Cambridge 1985.Search in Google Scholar

14. N. E. Dowling, Mechanical Behaviour of Materials (Ed. N. E. Dowling), 1st ed., Prentice-Hall Inc., New Jersey 1993.Search in Google Scholar

15. K. L. Johnson, The correlation of indentation experiments, J. Mech. Phys. Solids 18 (1970) 115-125; DOI: 10.1016/0022-5096(70)90029-3.10.1016/0022-5096(70)90029-3Search in Google Scholar

16. R. C. Rowe and R. J. Roberts, Mechanical Properties, in Pharmaceutical Powder Compaction Technology (Eds. G. Alderborn and C. Nystrom), 1st ed., Marcel Dekker Inc, New York 1996, pp. 283-322.10.1201/b14207-12Search in Google Scholar

17. S. W. Hoag, V. S. Dave and V. Moolcandani, Compression and Compaction, in Pharmaceutical Dosage Forms - Tablets (Eds. L. L. Augsburger and S. W. Hoag), 3rd ed., Taylor & Francis Group, New York 2008, pp. 555-631.Search in Google Scholar

18. S. Finnie, K. V. R. Prasad, D. B. Sheen and J. N. Sherwood, Microhardness and dislocation identification studies on paracetamol single crystals, Pharm. Res. 18 (2001) 674-681; DOI: 0724-8741/01/0500-0674.10.1023/A:1011093612868Search in Google Scholar

19. M. Radovic, E. Lara-Curzio and L. Riester, Comparison of different experimental techniques for determination of elastic properties of solids, Materials Sci. Engin. A368 (2004) 56-70; DOI: 10.1016/j. msea.2003.09.080.Search in Google Scholar

20. R. W. Heckel, An analysis of powder compaction phenomena, Trans. Metall. Soc. AIME 221 (1961a) 1001-1008.Search in Google Scholar

21. R. W. Heckel, Density-pressure relationships in powder compaction, Trans. Metall. Soc. AIME 221 (1961b) 671-675.Search in Google Scholar

22. E. E. Walker, The properties of powders VI: The compressibility of powders. Trans. Faraday Soc. 19 (1923) 73-82; DOI: 0.1039/tf9231900073.10.1039/tf9231900073Search in Google Scholar

23. K. Kawakita and K. H. Ludde, Some consideration on powder compression equations, Powder Technol. 4 (1971) 61-68; DOI: 10.1016/0032-5910(71)80001-3.10.1016/0032-5910(71)80001-3Search in Google Scholar

24. M. J. Adams, M. A. Mullier and J. P. K. Seville, Agglomerate strength measurement using a uniaxial confined compression test, Powder Technol. 78 (1994) 5-13; DOI: 140.1016/0032-5910(93)02777-8.10.1016/0032-5910(93)02777-8Search in Google Scholar

25. J. S. Smith, M. D. Wyrick and J. M. Poole, An evaluation of three techniques for determining Young’s modulus of mechanically alloyed materials. Dynamic Elastic Modulus Measurements in Materials, ASTM (1990) 195-206; DOI: 10.1520/STP24625S.10.1520/STP24625SSearch in Google Scholar

26. Standard Test Method for Young’s Modulus, Shear Modulus, and Poisson’s Ratio for Glass and Glass-Ceramics by Resonance, Annual Book of ASTM Standards 15 (2006) 623-692.Search in Google Scholar

27. N. A. Armstrong and R. F. Haines-Nutt, Elastic recovery and surface area changes in compacted powder systems, J. Pharm. Pharmacol. 24 (1972) 138-136; DOI: 10.1016/0032-5910(74)80054-9.10.1016/0032-5910(74)80054-9Search in Google Scholar

28. W. C. Duncan-Hewitt and G. C. Weatherly, Evaluating the hardness, Young’s modulus and fracture toughness of some pharmaceutical crystals using microindentation techniques, J. Mater. Sci. 8 (1989) 1350-1352; DOI: 0261-8028/89.Search in Google Scholar

29. M. Celik, Pharmaceutical Powder Compaction Technology, 2nd ed., Informa Healthcare, New York 2011.Search in Google Scholar

30. X. Cao and M. A. Morganti, Study of Hiestand’s “Special Case” Pharmaceutical Materials Using AFM Nanoindentation, 2009, AAPS Annual Meeting and Exposition. Search in Google Scholar

31. D. Olusanmi, K. J. Roberts, M. Ghadiri and Y. Ding, The breakage behaviour of Aspirin under quasi-static indentation and single particle impact loading: Effect of crystallographic anisotropy, Int. J. Pharm. 411 (2011) 49-63; DOI: 10.1016/j.ijpharm.2011.03.039.10.1016/j.ijpharm.2011.03.03921440610Search in Google Scholar

32. C. C. Kwan, Y. Q. Chen, Y. L. Ding, D. G. Papadopoulos, A. C. Bentham and M .Ghadiri, Development of a novel approach towards predicting the milling behaviour of pharmaceutical powders, Eur. J. Pharm. Sci. 23 (2004) 327-336; DOI: 10.1016/j.ejps.2004.08.006.10.1016/j.ejps.2004.08.00615567285Search in Google Scholar

33. M. Meier, E John, D. Wieckhusen, W. Wirth and W. Peukert, Influence of mechanical properties on impact fracture: Prediction of the milling behaviour of pharmaceutical powders by nanoindentation, Powder Technol. 188 (2009) 301-313; DOI: 101016/j.powtec.2008.05.009.Search in Google Scholar

34. V. M. Masterson and X. Cao, Evaluating particle hardness of pharmaceutical solids using AFM nanoindentation, Int. J. Pharm. 362 (2008) 163-171; DOI: 10.1016/j.ijpharm.2008.06.015.10.1016/j.ijpharm.2008.06.01518621120Search in Google Scholar

35. A. C. Fischer-Cripps, Nanoindentation, 3rd ed., Springer Verlag, New York 2011.10.1007/978-1-4419-9872-9Search in Google Scholar

36. X. Liao and T. S. Wiedmann, Measurement of process-dependent material properties of pharmaceutical solids by nNanoindentation, J. Pharm. Sci. 94 (2004) 79-92; DOI: 10.1002/jps.20227.10.1002/jps.2022715761932Search in Google Scholar

37. S. Varughese, M. S. R. N. Kiran, K. A. Solanko, A. D. Bond, U. Ramamurty and G. R. Desiraju, Interaction anisotropy and shear instability of aspirin polymorphs established by nanoindentation, Chem. Sci. 2 (2011) 2236-2242; DOI: 10.1039/c1sc00430a.10.1039/c1sc00430aSearch in Google Scholar

38. S. R. Cohen and E. Kalfon-Cohen, Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review, Beilstein J. Nanotechnol. 4 (2013) 815-833; DOI: 10.3762/ bjnano.4.93.10.3762/bjnano.4.93386924624367751Search in Google Scholar

39. E. H. H. Chow, D. K. Bučar and W. Jones, New opportunities in crystal engineering: The role of atomic force microscopy in studies of molecular crystals, Chem. Comm. 48 (2012) 9210-9226; DOI: 10.1039/c2cc32678g.10.1039/c2cc32678g22822481Search in Google Scholar

40. E. V. Boldyreva, High-pressure diffraction studies of molecular organic solids. A personal view, Acta Cryst. A64 (2008) 218-231; DOI: 10.1107/S0108767307065786.10.1107/S010876730706578618156687Search in Google Scholar

41. F. P. A. Fabbiani and C. R. Pulham, High-pressure studies of pharmaceutical compounds and energetic materials, Chem. Soc. Rev. 35 (2006) 932-942; DOI: 10.1039/B517780B.10.1039/b517780b17003899Search in Google Scholar

42. T. P. Shakhtshneider, E. V. Boldyreva, M. A. Vasilchenko, H. Ahsbahs and H. Uchtmann, Anisotropy of crystal structure distortion in organic molecular crystals of drugs induced by hydrostatic compression, J. Struct. Chem. 40 (1999) 892-898; DOI: 0022-4766/99/4006-0892.10.1007/BF02700697Search in Google Scholar

43. E. V. Boldyreva, T. P. Shakhtshneider, M. A. Vasilchenko, H. Ahsbahs and H. Uchtmann, Anisotropic crystal structure distortion of the monoclinic polymorph of acetaminophen at high hydrostatic pressure, Acta Cryst. B56 (2000) 299-309; DOI: 10.1107/s0108768199013634.10.1107/S010876819901363410794283Search in Google Scholar

44. T. Beyer, G. M. Day and S. L. Price, The prediction, morphology, and mechanical properties of the polymorphs of paracetamol, J. Am. Chem. Soc. 123 (2001) 5086-5094; DOI: 10.1021/ja0102787.10.1021/ja010278711457339Search in Google Scholar

45. M. H. Shariare, F. J. J. Leusen, M. De Matas, P. York and J. Anwar, Prediction of the mechanical behavior of crystalline solids, Pharm. Res. 29 (2012) 319-331; DOI: 10.1007/s11095-011-0543-1.10.1007/s11095-011-0543-1Search in Google Scholar

46. C. C. Sun and Y. H. Kiang, On the identification of slip planes in organic crystals based on attachment energy calculation, J. Pharm. Sci. 97 (2007) 3456-3461; DOI: 10.1002/jps.21234.10.1002/jps.21234Search in Google Scholar

47. M. J. Turner, S. P. Thomas, M. W. S. D. Jayatilaka and M. A. Spackman, Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals, Chem. Commun. 51 (2015) 3735-3738; DOI: 10.1039/c4cc09074h.10.1039/C4CC09074HSearch in Google Scholar

48. W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation measurements, J. Mater. Res. 7 (1992) 1564-1583; DOI: 10.1557/JMR.1992.1564.10.1557/JMR.1992.1564Search in Google Scholar

49. W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3-20; DOI: 10.1557/jmr.2004.0002. 10.1557/jmr.2004.0002Search in Google Scholar

50. C. M. Reddy, G. R. Krishna and S. Ghosh, Mechanical properties of molecular crystals: Applications to crystal engineering, Cryst. Eng. Comm. 12 (2010) 2296-2314; DOI: 10.1039/c003466e.10.1039/c003466eSearch in Google Scholar

51. U. Ramamurty and J. Jang, Nanoindentation for probing the mechanical behavior of molecular crystals: A review of the technique and how to use it, Cryst. Engin. Comm. 16 (2014) 12-23; DOI: 10.1039/c3ce41266k.10.1039/C3CE41266KSearch in Google Scholar

52. D. A. Lucca, K. Herrmann and M. J. Klopfstein, Nanoindentation: Measuring methods and applications, Manuf. Tech. 59 (2010) 803-819; DOI: 10.1016/j.cirp.2010.05.009.10.1016/j.cirp.2010.05.009Search in Google Scholar

53. http://www.csm-instruments.com/ Why is Nanoindentation more quantitative than AFM for measurement of surface mechanical properties?; access date January 25, 2014.Search in Google Scholar

54. X. Li and B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its application, Mater. Charact. 48 (2002) 11-36; DOI: org/10.1016/S1044-5803(02)00192-4.10.1016/S1044-5803(02)00192-4Search in Google Scholar

55. S. P. Baker, Nanoindentation Techniques, in Encyclopedia of materials: Science and Technology (Eds. K. H. J. Buschow, R. C. Cahn, M. C. Flemings, B. Ilschner, E.J. Kramer and S. Mahajan), Elsevier, New York 2001, pp. 5908-5915.Search in Google Scholar

56. Agilent Technologies, How to select the correct indenter tip, Agilent Technologies, Inc. 2009, USA.Search in Google Scholar

57. CSM Instruments, Nanoindentation approach to mechanical testing of extremely soft materials, CSM Instruments, No 35, June 2011, Switzerland.Search in Google Scholar

58. S. Varughese, M. S. R. N. Kiran, U. Ramamurty and G. R. Desiraju, Nanoindentation in crystal engineering: quantifying mechanical properties of molecular crystals, Angew. Chem. Int. Ed. 52 (2013) 2701-2712; DOI: 10.1002/anie.201205002.10.1002/anie.20120500223315913Search in Google Scholar

59. C. A. Schuh, Nanoindentation studies of materials, Materials Today 9 (2006) 32-40; DOI: 10.1016/ S1369-7021(06)71495-X.10.1016/S1369-7021(06)71495-XSearch in Google Scholar

60. A. C. Fischer-Cripps, Critical review of analysis and interpretation of nanoindentation test data, Surface & Coatings Tech. 200 (2006) 4153-4165; DOI: 10.1016/j.surfcoat.2005.03.018.10.1016/j.surfcoat.2005.03.018Search in Google Scholar

61. E. Rettler, S. Hoeppener, B. W. Sigusch and U. S. Schubert, Mapping the mechanical properties of biomaterials on different length scales: depth-sensing indentation and AFM based nanoindentation, J. Mater. Chem. B1 (2013) 2789-2806; DOI: 10.1039/c3tb20120a.10.1039/c3tb20120aSearch in Google Scholar

62. M. Egart, I. Ilić, B. Janković, N. Lah and S. Srčič, Compaction properties of crystalline pharmaceutical ingredients according to the Walker model and nanomechanical attributes, Int. J. Pharm. 472 (2014b) 347-355; DOI: 10.1016/j.ijpharm.2014.06.047.10.1016/j.ijpharm.2014.06.047Search in Google Scholar

63. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=3054; access date June 20, 2013.Search in Google Scholar

64. http://www.astm.org/Standards/E2546.htm.Search in Google Scholar

65. Agilent Nano Indenter G200, User’s Guide, Agilent Technologies, 2009.Search in Google Scholar

66. Agilent Technologies, Nanoindentation, scratch, and elevated temperature testing of cellulose and PMMA films, Agilent Technologies, Inc. 2010, USA.Search in Google Scholar

67. H. Hertz, Über die Berührung fester elastischer Körper, J. Reine Angew. Mathematik 92 (1894) 156-171.Search in Google Scholar

68. T. Chudoba and F. Richter, Investigation of creep behavior under load during indentation experiments and its influence on hardness and modulus results, Surface Coatings Technol. 148 (2001) 191-198; DOI: 10.1016/S0257-8972(01)01340-8.10.1016/S0257-8972(01)01340-8Search in Google Scholar

69. G. Feng and A. H. W. Ngan, Effects of creep and thermal drift on modulus measurement using depth-sensing indentation, J. Mater. Res. 17 (2002) 660-668; DOI: 010.1016/j.actbio.2014.08.004.10.1557/JMR.2002.0094Search in Google Scholar

70. I. N. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3 (1965) 47-57; DOI: 10.1016/0020-72225(65)900019-4.Search in Google Scholar

71. K. J. Ramos and D. F. Bhar, Mechanical behavior assessment of sucrose using nanoindentation, J. Mater. Res. 7 (2007) 2037-2045; DOI: 10.1557/JMR.2007.0249. 10.1557/jmr.2007.0249Search in Google Scholar

72. M. L. Malkowska and K. A. Khan, Effect of recompression on the properties of tablets prepared by dry granulation, Drug. Dev. Ind. Pharm. 9 (1983) 331-347; DOI: 10.3109/03639048309044678.10.3109/03639048309044678Search in Google Scholar

73. S. Inghelbrecht and J. P. Remon, Roller compaction and tableting of microcrystalline cellulose/ drug mixtures, Int. J. Pharm. 161 (1998) 215-224; DOI: 10.1016/S0378-5173(97)00356-6.10.1016/S0378-5173(97)00356-6Search in Google Scholar

74. J. Lee, Structural heterogeneity of pharmaceutical compacts probed by micro-indentation, J. Mater. Sci.: Mater. Med. 19 (2008) 1981-1990; DOI: 10.1007/s10856-007-3283-3.10.1007/s10856-007-3283-317943416Search in Google Scholar

75. A. Bolshakov and G. M. Pharr, Influences of pile-up on the measurement of mechanical properties by load and depth sensing indentation techniques, J. Mater. Res. 13 (1998) 1049-1058; DOI: 104910.1557/JMR.1999.0303.10.1557/JMR.1998.0146Search in Google Scholar

76. J. Hay, Introduction to instrumented indentation testing, Experim. Tech. (2009) 66-72; DOI: 10.1111/j. 1747-1567.2009.00541.x.Search in Google Scholar

77. Y. Huang, F. Zhang, K. C. Hwang, W. D. Nix, G. M. Pharr and G. Feng, A model of size effects in nano-indentation, J. Mech. Phys. Solids 54 (2006) 1668-1686; DOI: 10.1016/j.jmps.2006.02.002.10.1016/j.jmps.2006.02.002Search in Google Scholar

78. K. Sangwal, Review: Indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids - some basic concepts and trends, Cryst. Res. Technol. 44 (2009) 1019-1037; DOI: 10.1002/crat.200900385.10.1002/crat.200900385Search in Google Scholar

79. W. D. Nix and H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solids 46 (1998) 411-425; DOI: S0022-5096(97)00086-0.Search in Google Scholar

80. Agilent Technologies, Indentation rules of thumb: Applications and limits, Agilent Technologies, Inc. 2010, USA.Search in Google Scholar

81. http://cp.literature.agilent.com/litweb/pdf/5990-5700EN.pdf; Indentation rules of thumb-Applications and Limits, Agilent Technologies; access date October 25, 2015.Search in Google Scholar

82. http://www.iso.org/iso/catalogue_detail.htm?csnumber=30104; Metallic materials-Instrumented indentation test for hardness and materials parameters. ISO 14577-1: 2002; access date October 23, 2015.Search in Google Scholar

83. http://www.nanomechanicsinc.com/index.php/Service-Lab/sample-preparation.html; access date October 25, 2015.Search in Google Scholar

84. http://www.csm-instruments.com/ The influence of surface roughness on instrumented indentation testing (IIT); access date January 25, 2014.Search in Google Scholar

85. K. I. Schiffmann, Determination of fracture toughness of bulk materials and thin films by nanoindentation: comparison of different models, Philosoph. Magazine 91 (2011) 1163-1178; DOI: 10.1080/14786435.2010.487984.10.1080/14786435.2010.487984Search in Google Scholar

86. L. J. Taylor, D. G. Papadopoulos, P. J. Dunn, A. C. Bentham, J. C. Mitchell and M. J. Snowden, Mechanical characterization of powders using nanoindentation, Powder Tech. 143-144 (2004) 179-185; DOI: 10.1016/j.powtec.2004.04.012.10.1016/j.powtec.2004.04.012Search in Google Scholar

87. L. J. Taylor, D. G. Papadopoulos, P. J. Dunn, A. C. Bentham, N. J. Dawson, J. C. Mitchell and M. J. Snowden, Predictive milling of pharmaceutical materials using nanoindentation of single crystals, Org. Process Res. Dev. 8 (2004) 674-679; DOI: 10.1021/op0300241.10.1021/op0300241Search in Google Scholar

88. http://cdn.intechweb.org/pdfs/16971.pdf; access date October 25, 2015.Search in Google Scholar

89. M. Ghadiri and Z. Zhang, Impact attrition of particulate solids. Part 1: A theoretical model of chipping, Chem. Engin. Sci. 57 (2002) 3659-3669; DOI: 0009-2509(02)00240-3.10.1016/S0009-2509(02)00240-3Search in Google Scholar

90. B. R. Lawn and D. B. Marshall, Hardness, toughness and brittleness: An indentation analysis, J. Am. Ceram. Soc. 62 (1979) 347-350.10.1111/j.1151-2916.1979.tb19075.xSearch in Google Scholar

91. R. V. Haware, P. Kim, L. Ruffino, B. Nimi, C. Fadrowsky, M. Doyle, S. W. X. M. Boerrigter, A. Cuitino and K. Morris, Anisotropic crystal deformation measurements determined using powder X-ray diffraction and a new in situ compression stage, Int. J. Pharm. 418 (2011) 199-206; DOI: 10.1016/j.ijpharm.2011.06.021. 10.1016/j.ijpharm.2011.06.02121708235Search in Google Scholar

92. Y. Feng and D. J. W. Grant, Influence of crystal structure on the compaction properties of n-alkyl 4-hydrokxybenzoate esters (parabens), Pharm. Res. 23 (2006) 1608-1616; DOI: 10.1007/s11095-006-0275-9.10.1007/s11095-006-0275-916783478Search in Google Scholar

93. S. E. David, M. Ramirez, P. Timmins and B. R. Conway, Comparative physical, mechanical and crystallographic properties of a series of gemfibrozil salts, J. Pharm. Pharmacol. 62 (2010) 1519-1525; DOI: 10.11117j.2042-7158.2010.01025.x.10.1111/j.2042-7158.2010.01025.x21039537Search in Google Scholar

94. Y. Feng, J. W. Grant and C. C. Sun, Influence of crystal structure on the tableting properties of n-alkyl 4-hydroxybenzoate esters (parabens), J. Pharm. Sci. 96 (2007) 3324-3333; DOI: 10.1002/ jps.20981.10.1002/jps.2098117542021Search in Google Scholar

95. R. Bandyopadhyay and D. J. W. Grant, Plasticity and slip system of plate-shaped crystals of Llysine monohydrochloridedihydrate, Pharm. Res. 19 (2002) 491-496; DOI: 0724-8741/02/0400-0491/0.10.1023/A:1015151830473Search in Google Scholar

96. C. M. Reddy, K. A. Padmanabhan and G. R. Desiraju, Structure-property correlations in bending and brittle organic crystals, Cryst. Growth Des. 6 (2006) 2720-2731; DOI: 10.1021/cg060398w.10.1021/cg060398wSearch in Google Scholar

97. M. S. R. N. Kiran, S. Varughese, C. M. Reddy, U. Ramamurty and G. R. Desiraju, Mechanical anisotropy in crystalline saccharin: nanoindentation studies, Cryst. Growth Des. 10 (2010) 4650-4655; DOI: 10.1021/cg1009362.10.1021/cg1009362Search in Google Scholar

98. M. Egart, B. Janković, N. Lah, I. Ilić and S. Srčič, Nanomechanical properties of selected single pharmaceutical crystals as a predictor of their bulk behaviour, Pharm. Res. 32 (2015) 469-481; DOI: 10.1007/s11095-014-1475-3.10.1007/s11095-014-1475-325092070Search in Google Scholar

99. R. J. Roberts and R. C. Rowe, The compaction of pharmaceutical and other model materials: a pragmatic approach, Chem. Eng. Sci. 42 (1987) 903-911; DOI: 009-2509/87.Search in Google Scholar

100. M. K. Mishra, U. Ramamurty and G. R. Desiraju, Hardness alternation in α,ω-alkanedicarboxylic acids, Chem. Asian J. 10 (2015) 2176-2181; DOI: 10.1002/asia.201500322.10.1002/asia.20150032225919633Search in Google Scholar

101. M. K. Mishra, S. Varughese, U. Ramamurty, and G. R. Desiraju, Odd-even effect in the elastic moduli of α,ω-alkanedicarboxylic acids, J. Am. Chem. Soc. 135 (2013) 8121-8124; DOI: 10.1021/ ja402290hl.10.1021/ja402290h23688149Search in Google Scholar

102. P. Sanphui, M. K. Mishra, U. Ramamurty and G. R. Desiraju, Tuning mechanical properties of pharmaceutical crystals with multicomponent crystals: voriconazole as a case study, Mol. Pharmaceutics 12 (2015) 889-897; DOI: 10.1021/mp500719t.10.1021/mp500719t25587626Search in Google Scholar

103. S. Chen, A. Y. Sheikh and R. Ho, Evaluation of effects of pharmaceutical processing on structural disorders of active pharmaceutical ingredient crystals using nanoindentation and highresolution total scattering pair distribution function analysis, J. Pharm. Sci. 103 (2014) 3879-3890; DOI: 10.1002/jps.24178.10.1002/jps.2417825331822Search in Google Scholar

104. M. K. Mishra, P. Sanphui, U. Ramamurty and G. R. Desiraju, Solubility-hardness correlation in molecular crystals: curcumin and sulfathiazole polymorphs, Cryst. Growth Des. 14 (2014) 3054-3061; DOI: 10.1021/cg500305.Search in Google Scholar

105. I. Azuri, E. Meirzadeh, D. Ehre, S. R. Cohen, A. M. Rappe, M. Lahav, I. Lubomirsky and L. Kronik, Unusually large Young’s moduli of amino acid molecular crystals, Angew. Chem. Int. Ed. 54 (2015) 1-6; DOI: 10.1002/anie.201505813.10.1002/anie.201505813Search in Google Scholar

106. B. A. Zakharov, B. A. Kolesov and E. V. Boldyreva, Effect of pressure on crystalline L- and DLserine: revisited by a combined single-crystal X-ray diffraction at a laboratory source and polarized Raman spectroscopy study, Acta Cryst. B68 (2012) 275-286; DOI: 10.1107/s0108768112015960.10.1107/S0108768112015960Search in Google Scholar

107. C. Murli, S. M. Sharma, S. Karmakar and S. K. Sikka, α-glycine under high pressures: a Raman scattering study, Physica B339 (2003) 23-30; DOI: 10.1016/S0921-4526(03)00446-0.10.1016/S0921-4526(03)00446-0Search in Google Scholar

108. S. Zugner, K. Marquardt and I. Zimmerman, Influence of nanomechanical crystal properties on the comminution process of particulate solids in spiral jet mills, Eur. J. Biopharm. Pharm. 62 (2006) 194-201; DOI: 10.1016/j.ejpb.2005.08.002. 10.1016/j.ejpb.2005.08.002Search in Google Scholar

109. O. Vegt, H. Vromans, J. Toonder and K. Voort Maarschalk, Influence of flaws and crystal properties on particle fracture in a jet mill, Powder Technol. 191 (2009) 72-77; DOI: 10.1016/j.powtec. 2008.09.014.Search in Google Scholar

110. L. Vogel and W. Peukert, Breakage behaviour of different materials-construction of a master curve for the breakage probability, Powder Technol. 129 (2003) 101-110; DOI: 10.1016/S0032-5910(02)00217-6.10.1016/S0032-5910(02)00217-6Search in Google Scholar

111. L. Vogel and W. Peukert, From single particle impact behavior to modeling of impact mills, Chem. Engin. Sci. 60 (2005) 5164-5176; DOI: 10.1016/j.ces.2005.03.064.10.1016/j.ces.2005.03.064Search in Google Scholar

112. B. Govedarica, I. Ilić, R. Šibanc, R. Dreu and S. Srčič, The use of single particle mechanical properties for predicting the compressibility of pharmaceutical materials, Powder Technol. 225 (2012) 43-51; DOI: 10.1016/j.powtec.2012.03.030.10.1016/j.powtec.2012.03.030Search in Google Scholar

113. P. P. Bag, M. Chen, C. C. Sun and C. M. Reddy, Direct correlation among crystal structure, mechanical behaviour and tabletability in a trimorphic molecular compound, Cryst. Eng. Comm. 14 (2012) 3865-3867; DOI: 10.1039/c2ce25100k.10.1039/c2ce25100kSearch in Google Scholar

114. S. Chattoraj, L. Shi, M. Chen, A. Alhalaweh, S. Velaga and C. C. Sun, Origin of deteriorated crystal plasticity and compaction properties of a 1:1 cocrystal between piroxicam and saccharin, Cryst. Growth Des. 14 (2014) 3864-3874; DOI: 10.1021/cg500388s.10.1021/cg500388sSearch in Google Scholar

115. G. R. Krishna, L. Shi, P. P. Bag, C. C. Sun and C. M. Reddy, Correlation among crystal structure, mechanical behavior, and tabletability in the co-crystals of vanillin isomers, Cryst. Growth Des. 15 (2015) 1827-1832; DOI: 10.1021/cg5018642.10.1021/cg5018642Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other