Open Access

Contribution to diagnostics/prognostics of tuberculosis in children. I. New methods of assaying zinc and simultaneously copper and zinc in diluted sera by flame atomic-absorption spectrometry


Cite

1. A. G. G. Dionisio, A. M. D. De Jesus, R. S. Amais, G. L. Donati, K. dos Anjos Miranda, B. B. Guerra, J. A. Nobrega and E. R. Pereira-Filho, Old and new flavors of flame (furnace) atomic absorption spectrometry, Int. J. Spectr. 2011, Article ID 262715 (1–30); DOI: 10.1155/2011/262715.10.1155/2011/262715Search in Google Scholar

2. P. J. Parsons and F. Barbosa, Jr., Atomic spectrometry and trends in clinical laboratory medicine, Spectrochim. Acta Part B: At. Spectr.62 (2007) 992–1003; DOI: 10.1016/j.sab.2007.03.007.10.1016/j.sab.2007.03.007Search in Google Scholar

3. N. Weinstock and M. Uhlemann, Automated determination of copper in undiluted serum by atomic-absorption spectroscopy, Clin. Chem.27 (1981) 1438–1440.10.1093/clinchem/27.8.1438Search in Google Scholar

4. T. Makino and K. Takahara, Direct determination of plasma copper and zinc in infants by atomic absorption with discrete nebulization, Clin. Chem. 27 (1981) 1445–1447.10.1093/clinchem/27.8.1445Search in Google Scholar

5. C. Terrés-Martos, M. Navarro-Alarcón, F. Martín-Lagos, H. L. G. de la Serrana and M. C. López-Martínez, Determination of copper levels in serum of healthy subjects by atomic absorption spectrometry, Sci. Total Environ. 198 (1997) 97–103; DOI: 10.1016/S0048-9697(97)05448-X.10.1016/S0048-9697(97)05448-XSearch in Google Scholar

6. C. M. P. V. Lopes, A. A. Almeida, J. L. M. Santos and J. L. F. C. Lima, Automatic flow system for the sequential determination of copper in serum and urine by flame atomic absorption spectrometry, Anal. Chim. Acta555 (2006) 370–376; DOI: 10.1016/j.aca.2005.09.013.10.1016/j.aca.2005.09.013Search in Google Scholar

7. S. Salmela and E. Vuori, Improved direct determination of copper and zinc in a single serum dilution by atomic absorption spectrophotometry, At. Spectrosc. 5 (1984) 146–149.Search in Google Scholar

8. Analytical Methods for Atomic Absorption Spectrometry, PerkinElmer™ Instruments, Perkin-Elmer Bodenseewerk, Überlingen, Germany, August 2000.Search in Google Scholar

9. S. Luterotti and T. Vukman, Acidic method for determination of copper in blood serum by FAAS, Acta Pharm. 52 (2002) 143–148.Search in Google Scholar

10. S. Luterotti, T. Vukman Kordić and S. Dodig, Simultaneous determination of iron and copper in children’s sera by FAAS, Acta Pharm. 61 (2011) 93–102; DOI: 10.2478/v10007-011-008-4.10.2478/v10007-011-008-421406347Search in Google Scholar

11. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonized Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2(R1), Current Step 4 version, ICH, London 2005.Search in Google Scholar

12. Z. Flegar-Meštrić, N. Jagarinec, B. Šurina, D. Vrhovski-Hebrang, V. Preden-Kereković, S. Perkov and B. Smuđ-Makalouš, Reference intervals for biochemistry analytes determined in the sera of children and adolescents from Zagreb, Croatia, Biochem. Med. 6 (1996) 277–288.Search in Google Scholar

13. G. Lockitch, A. C. Halstead, L. Wadsworth, G. Quigley, L. Reston and B. Jacobson, Age- and sex-specific pediatric reference intervals and correlations for zinc, copper, selenium, iron, vitamins A and E, and related proteins, Clin. Chem. 34 (1988) 1625–1628.10.1093/clinchem/34.8.1625Search in Google Scholar

14. A. Gustavo González and M. Ángeles Herrador, A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles, Trends Anal. Chem. 26 (2007) 227–237; DOI: 10.1016/j.trac.2007.01.009.10.1016/j.trac.2007.01.009Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other