Open Access

Novel 4-aminoquinazoline derivatives as new leads for anticancer drug discovery


Cite

1. S. B. Mhaske and N. P. Argade, The chemistry of recently isolated naturally occurring quinazolinone alkaloids, Tetrahedron62 (2006) 9787–9826; DOI: 10.1016/j.tet.2006.07.098.10.1016/j.tet.2006.07.098Search in Google Scholar

2. N. J. Liverton, D. J. Armstrong, D. A. Claremon, D. C. Remy, J. J. Baldwin, R. J. Lynch, G. Zhang and R. J. Gould, Nonpeptide glycoprotein IIb/IIIa inhibitors: Substituted quinazolinediones and quinazolinones as potent fibrinogen receptor antagonists, Bioorg. Med. Chem. Lett. 8 (1998) 483–486; DOI: 10.1016/S0960-894X(98)00047-X.10.1016/S0960-894X(98)00047-XSearch in Google Scholar

3. W. Zhang, J. P. Mayer, S. E. Hall and J. A. Weigel, A polymer-bound iminophosphorane approach for the synthesis of quinolones, J. Comb. Chem.3 (2001) 255–256; DOI: 10.1021/cc000113e.10.1021/cc000113eSearch in Google Scholar

4. R. J. Griffin, S. Srinivasan, K. Bowman, A. H. Calvert, N. J. Curtin, D. R. Newell, L. C. Pemberton and B. T. Golding, Resistance-modifying agents. 5. Synthesis and biological properties of quinazolinone inhibitors of the DNA repair enzyme poly (ADP-ribose) polymerase (PARP), J. Med. Chem.41 (1998) 5247–5256; DOI: 10.1021/jm980273t.10.1021/jm980273tSearch in Google Scholar

5. A. N. Hughes, I. Rafi, M. J. Griffin, H. A. Calvert, D. R. Newell, J. A. Calvrte, A. Johnston, N. Clendeninn and A. V. Boddy, Phase I studies with the nonclassical antifolate nolatrexed dihydrochloride (AG337, THYMITAQ) administered orally for 5 days, Clin. Cancer Res.5 (1999) 111–118.Search in Google Scholar

6. E. Hamel, C. M. Lin, J. Plowman, H. K. Wang, K. H. Lee and K. D. Paull, Antitumor 2,3-dihydro-2-(aryl)-4(1H)-quinazolinone derivatives: Interactions with tubulin, Biochem. Pharmacol. 51 (1996) 53–59; DOI: 10.1016/0006-2952(95)02156-6.10.1016/0006-2952(95)02156-6Search in Google Scholar

7. S. H. Hwang, A. Rait, K. F. Pirollo, Q. Zhou, V. M. Yenugonda, G. M. Chinigo, M. L. Brown and E. H. Chang, Tumor-targeting nanodelivery enhances the anticancer activity of a novel quinazolinone analogue, Mol. Cancer Ther.7 (2008) 559–568; DOI: 10.1158/1535-7163.MCT-07-0548.10.1158/1535-7163.MCT-07-054818347143Search in Google Scholar

8. S. K. Kundu, M. P. D. Mahindaratne, M. V. Quintero, A. Bao and G. R. Negrete, One-pot reductive cyclization to antitumor quinazoline precursors, Arkivoc 2008 (2) 33–42.10.3998/ark.5550190.0009.205Search in Google Scholar

9. M. H. Cohen, J. R. Johnson, Y. F. Chen, R. Sridhara and R. Pazdur, FDA drug approval summary: Erlotinib (Tarceva®) tablets, Oncologist10 (2005) 461–466; DOI: 10.1634/theoncologist.10-7-461.10.1634/theoncologist.10-7-46116079312Search in Google Scholar

10. K. Abouzid and S. Shouman, Design, synthesis and in vitro antitumor activity of 4-aminoquino-line and 4-aminoquinazoline derivatives targeting EGFR tyrosine kinase, Bioorg. Med. Chem. 16 (2008) 7543–7551; DOI: 10.1016/j.bmc.2008.07.038.10.1016/j.bmc.2008.07.03818678492Search in Google Scholar

11. A. Witt and J. Bergman, Recent developments in the field of quinazoline chemistry, Curr. Org. Chem. 7 (2003) 659–677; DOI: /10.2174/1385272033486738.10.2174/1385272033486738Search in Google Scholar

12. H. Wong and A. Gansan, Total synthesis of the fumiquinazoline alkaloids: Solution-phase studies, J. Org. Chem. 65 (2003) 1022–1039; DOI: /10.1021/jo9914364.Search in Google Scholar

13. J. P. Micheal, Quinoline, quinazoline and acridone alkaloids, Nat. Prod. Rep. 18 (2003) 543–559.10.1039/b005387m11699885Search in Google Scholar

14. M. M. Ghorab, M. S. Alsaid and R. K. Arafa, Design, synthesis and potential anti-proliferative activity of some novel 4-aminoquinoline derivatives, Acta Pharm.64 (2014) 285–297; DOI: 10.2478/acph-2014-0030.10.2478/acph-2014-003025296675Search in Google Scholar

15. M. M. Ghorab, F. A. Ragab, S. I. Alqasoumi, A. M. Alafeefy and S. A. Aboulmagd, Synthesis of some new pyrazolo [3, 4-d] pyrimidine derivatives of expected anticancer and radioprotective activity, Eur. J. Med. Chem.45 (2010) 171–178; DOI: 10.1016/j.bmc.–2013.11.042.Search in Google Scholar

16. M. M. Ghorab, H. I. Zienab, A. Mohamad and A. A. Radwan, Synthesis, antimicrobial evaluation and molecular modelling of novel sulfonamides carrying a biologically active quinazoline nucleus, J. Pharm. Res.36 (2013) 660–670; DOI: 10.1007/s12272-013-0094-6.10.1007/s12272-013-0094-623529860Search in Google Scholar

17. M. M. Ghorab, H. I. Zienab, A. A. Radwan and A. Mohamad, Synthesis and pharmacophore modeling of novel quinazolines bearing a biologically active sulfonamide moiety, Acta Pharm. 63 (2013) 1–18; DOI: 10.2478/acph-2013-0006.10.2478/acph-2013-000623482309Search in Google Scholar

18. M. M. Ghorab, F. A. Ragab, H. I Heiba and M. G. El-Gazzar, Synthesis, in vitro anticancer screening and radiosensitizing evaluation of some new 4-[3-(substituted)thioureido]-N-(quinoxalin-2-yl)-benzenesulfonamide derivatives, Acta Pharm.61 (2011) 415–425; DOI: 10.2478/v10007-011-0040-4.10.2478/v10007-011-0040-422202200Search in Google Scholar

19. M. M. Ghorab, F. A. Ragab, H. I. Hieba, H. A. Yousef and M. G. El-Gazzar, Synthesis of novel pyrazole and pyrimidine derivatives bearing sulfonamide moiety as antitumor and radiosensitizing agents, Med. Chem. Res.21 (2012) 1376–1383; DOI: 10.1007/s00044-013-0721-210.1007/s00044-013-0721-2Search in Google Scholar

20. M. S. Al-Dosari, M. M. Ghorab, M. S. Alsaid, Y. M. Nissan and A. B. Ahmed, Synthesis and anti-cancer activity of some novel trifluoromethylquinolines carrying a biologically active benzene-sulfonamide moiety, Eur. J. Med. Chem.69 (2013) 373–383; DOI: 10.1016/j.ejmech.2013.08.048.10.1016/j.ejmech.2013.08.04824077528Search in Google Scholar

21. M. M. Ghorab and M. S. Alsaid, Synthesis and antitumor activity of some novel hydrazide, 1, 2-dihydropyridine, chromene, and benzochromene derivatives, J. Heterocycl. Chem.49 (2012) 272–280; DOI: 10.1002/jhet.829.10.1002/jhet.829Search in Google Scholar

22. M. M. Ghorab, F. A. Ragab, H. I. Hieba and W. M. Ghorab, Design and synthesis of some novel quinoline derivatives as anticancer and radiosensitizing agents targeting VEGFR tyrosine kinase, J. Heterocycl. Chem.48 (2011) 1269–1279; DOI: 10.1002/jhet.749.10.1002/jhet.749Search in Google Scholar

23. M. M. Ghorab, M. S. Alsaid and E.M. El-hossary, In vitro cytotoxic evaluation of some new heterocyclic sulfonamide derivatives, J. Heterocycl. Chem.48 (2011) 563–571; DOI: 10.1002/jhet.619.10.1002/jhet.619Search in Google Scholar

24. H. Cope, R. Mutter, W. Heal, C. Pascoe, P. Brown, S. Pratt and B. Chen, Synthesis and SAR study of acridine, 2-methylquinoline and 2-phenylquinazoline analogues as anti-prion agents, Eur. J. Med. Chem.41 (2006) 1124–1143; DOI: 10.1016/j.ejmech.-2006.05.002.Search in Google Scholar

25. K. Juvale, J. Gallus and M. Wiese, Investigation of quinazolines as inhibitors of breast cancer resistance protein (ABCG2), Bioorg. Med. Chem.21 (2013) 7858–7873; DOI: 10.1016/j.bmc.2013.10.007.10.1016/j.bmc.2013.10.00724184213Search in Google Scholar

26. B. R. Dravyakar and P. B. Khedekar, Study of synthesis of novel N,2-diphenylquinazolin-4-amine derivatives as an anti-inflammatory and analgesic agent, Der Pharma Chem.4 (2012) 699–706.Search in Google Scholar

27. J. Kapil and W. Michael, 4-Substituted-2-phenylquinazolines as inhibitors of BCRP, Bioorg. Med. Chem. Lett.22 (2012) 6766–6769; DOI: /10.1016/j.bmcl.2012.08.024.10.1016/j.bmcl.2012.08.02423017888Search in Google Scholar

28. F. Ebel, A. Schuhmacher and K. E. Kling, Vat Dyes for Dyeing Fibers, Fabrics, and Other Structures Consisting of High Molecular Weight Substances Containing Carboxamide Groups, Patent DE 1046565, December 18, 1958.Search in Google Scholar

29. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney and M. R. Boyd, New colorimetric cytotoxicity assay for anticancer-drug screening, J. Natl. Cancer Inst.82 (1990) 1107–1112; DOI: 10.1093/jnci/-82.13.1107.Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other