Open Access

Albumin and functionalized albumin nanoparticles: production strategies, characterization, and target indications


Cite

Deborah E, Citrin MD. Recent developments in radiotherapy. N Eng J Med. 2017; 377:1065–75.DeborahECitrinMDRecent developments in radiotherapyN Eng J Med201737710657510.1056/NEJMra160898628902591Search in Google Scholar

Jha S, Mathur P, Ramteke S, Jain NK. Pharmaceutical potential of quantum dots. Artif Cells Nanomed Biotechnol. 2018; 46:57–65.JhaSMathurPRamtekeSJainNKPharmaceutical potential of quantum dotsArtif Cells Nanomed Biotechnol201846576510.1080/21691401.2017.141193229216759Search in Google Scholar

Elzoghby AO, Samy WM, Elgindt NA. Albumin-based nanoparticles as potential controlled drug delivery systems. J Control Release. 2012; 157:168–82.ElzoghbyAOSamyWMElgindtNAAlbumin-based nanoparticles as potential controlled drug delivery systemsJ Control Release20121571688210.1016/j.jconrel.2011.07.03121839127Search in Google Scholar

Ziarani M, Malmir M, Lashgari N, Badiei A. The role of hollow magnetic nanoparticles in drug delivery. RSC Adv. 2019; 9:5094–106.ZiaraniMMalmirMLashgariNBadieiAThe role of hollow magnetic nanoparticles in drug deliveryRSC Adv20199509410610.1039/C9RA01589BSearch in Google Scholar

Anderson SD, Gwenin VV, Gwenin CD. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res Lett. 2019; 14:188. doi: 10.1186/s11671-019-3019-6AndersonSDGweninVVGweninCDMagnetic functionalized nanoparticles for biomedical, drug delivery and imaging applicationsNanoscale Res Lett20191418810.1186/s11671-019-3019-6654297031147786Open DOISearch in Google Scholar

Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv. 2019; 16:69–78.VangijzegemTStanickiDLaurentSMagnetic iron oxide nanoparticles for drug delivery: applications and characteristicsExpert Opin Drug Deliv201916697810.1080/17425247.2019.155464730496697Search in Google Scholar

Cordero LB, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials. 2019; 9:474. doi: 10.3390/nano9030474CorderoLBAlkortaIAranaLApplication of solid lipid nanoparticles to improve the efficiency of anticancer drugsNanomaterials2019947410.3390/nano9030474647407630909401Open DOISearch in Google Scholar

Hosseini SM, Abbasalipourkabir R, Jalilian FA, Asl SS, Farmany A, Roshanaei G, Arabestani MR. Doxycycline-encapsulated solid lipid nanoparticles as promising tool against Brucella melitensis enclosed in macrophage: a pharmacodynamics study on J774A.1 cell line. Antimicrob Resist Infect Control. 2019; 8:62. doi: 10.1186/s13756-019-0504-8HosseiniSMAbbasalipourkabirRJalilianFAAslSSFarmanyARoshanaeiGArabestaniMRDoxycycline-encapsulated solid lipid nanoparticles as promising tool against Brucella melitensis enclosed in macrophage: a pharmacodynamics study on J774A.1 cell lineAntimicrob Resist Infect Control201986210.1186/s13756-019-0504-8644822630988946Open DOISearch in Google Scholar

Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, Rosenholm JM. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics. 2018; 10:191. doi: 10.3390/pharmaceutics10040191MishraVBansalKKVermaAYadavNThakurSSudhakarKRosenholmJMSolid lipid nanoparticles: emerging colloidal nano drug delivery systemsPharmaceutics20181019110.3390/pharmaceutics10040191632125330340327Open DOISearch in Google Scholar

Naeem S, Viswanathan G, Misran M. Liposomes as colloidal nanovehicles: on the road to success in intravenous drug delivery. Rev Chem Eng. 2017; 34:365–83.NaeemSViswanathanGMisranMLiposomes as colloidal nanovehicles: on the road to success in intravenous drug deliveryRev Chem Eng2017343658310.1515/revce-2016-0018Search in Google Scholar

Ahmad N, Ahmad R, Alam MA, Ahmad FJ. Enhancement of oral bioavailability of doxorubicin through surface modified biodegradable polymeric nanoparticles. Chem Cent J. 2018; 12:65. doi: 10.1186/s13065-018-0434-1AhmadNAhmadRAlamMAAhmadFJEnhancement of oral bioavailability of doxorubicin through surface modified biodegradable polymeric nanoparticlesChem Cent J2018126510.1186/s13065-018-0434-1596635229796830Open DOISearch in Google Scholar

Jin M, Jin G, Kang L, Chen L, Gao Z, Huang W. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes. Int J Nanomed. 2018; 13:2405–23.JinMJinGKangLChenLGaoZHuangWSmart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomesInt J Nanomed20181324052310.2147/IJN.S161426Search in Google Scholar

Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 2018; 19:1979. doi: 10.3390/ijms19071979SinghPPanditSMokkapatiVRSSGargARavikumarVMijakovicIGold nanoparticles in diagnostics and therapeutics for human cancerInt J Mol Sci201819197910.3390/ijms19071979Open DOISearch in Google Scholar

Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, Deng Y. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015; 10:81–98.LiJWangXZhangTWangCHuangZLuoXDengYA review on phospholipids and their main applications in drug delivery systemsAsian J Pharm Sci201510819810.1016/j.ajps.2014.09.004Search in Google Scholar

Yu G, Ning Q, Mo Z, Tang S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. Artif Cells Nanomed Biotechnol. 2019; 47:1476–87.YuGNingQMoZTangSIntelligent polymeric micelles for multidrug co-delivery and cancer therapyArtif Cells Nanomed Biotechnol20194714768710.1080/21691401.2019.1601104Search in Google Scholar

Martínez-Lopez AL, Pangua C, Reboredo C, Campión R, Morales-Gracia J, Irache JM. Protein-based nanoparticles for drug delivery purposes. Int J Pharma. 2020; 581:119289. doi: 10.1016/j.ijpharm.2020.119289Martínez-LopezALPanguaCReboredoCCampiónRMorales-GraciaJIracheJMProtein-based nanoparticles for drug delivery purposesInt J Pharma202058111928910.1016/j.ijpharm.2020.119289Open DOISearch in Google Scholar

Okamoto Y, Taguchi K, Imoto S, Chuang VTG, Yamasaki K, Otagiri M. Cell uptake and anti-tumor effect of liposomes containing encapsulated paclitaxel-bound albumin against breast cancer cells in 2D and 3D cultured models. J Drug Deliv Sci Technol. 2020; 55:101381. doi: 10.1016/j.jddst.2019.101381OkamotoYTaguchiKImotoSChuangVTGYamasakiKOtagiriMCell uptake and anti-tumor effect of liposomes containing encapsulated paclitaxel-bound albumin against breast cancer cells in 2D and 3D cultured modelsJ Drug Deliv Sci Technol20205510138110.1016/j.jddst.2019.101381Open DOISearch in Google Scholar

Langer K, Balthasar S, Vogel V, Dinauer H, Briesen H, Schubert D. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm. 2003; 275:169–80.LangerKBalthasarSVogelVDinauerHBriesenHSchubertDOptimization of the preparation process for human serum albumin (HSA) nanoparticlesInt J Pharm20032751698010.1016/S0378-5173(03)00134-0Search in Google Scholar

Lomis N, Westfall S, Farahdel L, Mathotra M, Tim DS, Prakash S. Human serum nanoparticles for use in cancer drug delivery: process optimization and in vitro characterization. Nanomaterials. 2016; 6:116. doi: 10.3390/nano6060116LomisNWestfallSFarahdelLMathotraMTimDSPrakashSHuman serum nanoparticles for use in cancer drug delivery: process optimization and in vitro characterizationNanomaterials2016611610.3390/nano6060116530262128335244Open DOISearch in Google Scholar

Haeri HH, Schunk B, Tomaszewski J, Schimm H, Gelos MJ, Hinderberger D. Fatty acid binding to human serum albumin in blood serum characterized by EPR spectroscopy. ChemistryOpen. 2019; 8:650–56.HaeriHHSchunkBTomaszewskiJSchimmHGelosMJHinderbergerDFatty acid binding to human serum albumin in blood serum characterized by EPR spectroscopyChemistryOpen201986505610.1002/open.201900113653245031143562Search in Google Scholar

Rabah SA, Gowan IL, Pagnin M, Osman N, Richardson SJ. Thyroid hormone distributor proteins during development in vertebrates. Front Endocrinol. 2019; 10:506. doi: 10.3389/fendo.2019.00506RabahSAGowanILPagninMOsmanNRichardsonSJThyroid hormone distributor proteins during development in vertebratesFront Endocrinol20191050610.3389/fendo.2019.00506669429631440205Open DOISearch in Google Scholar

Pontremoli C, Barbero N, Viscardi G, Visentin SJ. Insight into the interaction of inhaled corticosteroids with human serum albumin: a spectroscopic-based study. Pharm Anal. 2018; 8:37–44.PontremoliCBarberoNViscardiGVisentinSJInsight into the interaction of inhaled corticosteroids with human serum albumin: a spectroscopic-based studyPharm Anal20188374410.1016/j.jpha.2017.07.003Search in Google Scholar

Seijsing J, Sobieraj AM, Keller N, Shen Y, Zinkernagel AS, Loessner MJ, Schmelcher M. Improved biodistribution and extended serum half-life of a bacteriophage endolysin by albumin binding domain fusion. Front Microbiol. 2018; 9:2927. doi: 10.3389/fmicb.2018.02927SeijsingJSobierajAMKellerNShenYZinkernagelASLoessnerMJSchmelcherMImproved biodistribution and extended serum half-life of a bacteriophage endolysin by albumin binding domain fusionFront Microbiol20189292710.3389/fmicb.2018.02927Open DOISearch in Google Scholar

Michelis R, Sela S, Zeitun T, Geron R, Kristal B. Unexpected normal colloid osmotic pressure in clinical states with low serum albumin. PLoS ONE. 2016; 11:e0159839. doi: 10.1371/journal.pone.0159839MichelisRSelaSZeitunTGeronRKristalBUnexpected normal colloid osmotic pressure in clinical states with low serum albuminPLoS ONE201611e015983910.1371/journal.pone.0159839Open DOISearch in Google Scholar

Coverdale JPC, Barnett JP, Adamu AH, Griffiths EJ, Stewart AJ, Blindauer CA. A metalloproteomic analysis of interactions between plasma proteins and zinc: elevated fatty acid levels affect zinc distribution. Metallomics. 2019; 11:1805–19.CoverdaleJPCBarnettJPAdamuAHGriffithsEJStewartAJBlindauerCAA metalloproteomic analysis of interactions between plasma proteins and zinc: elevated fatty acid levels affect zinc distributionMetallomics20191118051910.1039/C9MT00177HSearch in Google Scholar

Meloun B, Moravek L, Kostka V. Complete amino acid sequence of human serum albumin. FEBS Lett. 1975; 58:134–7.MelounBMoravekLKostkaVComplete amino acid sequence of human serum albuminFEBS Lett197558134710.1016/0014-5793(75)80242-0Search in Google Scholar

Usoltsev D, Sitnikova V, Kajava A, Uspenskaya M. Systematic FTIR spectroscopy study of the secondary structure changes in human serum albumin under various denaturation conditions. Biomolecules. 2019; 9:359. doi: 10.3390/biom9080359UsoltsevDSitnikovaVKajavaAUspenskayaMSystematic FTIR spectroscopy study of the secondary structure changes in human serum albumin under various denaturation conditionsBiomolecules2019935910.3390/biom9080359672385031409012Open DOISearch in Google Scholar

Majorek KA, Porebski PJ, Dayal A, Zimmerman MD, Jablonska K, Stewart AJ, et al. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol Immunol. 2012; 52:174–82.MajorekKAPorebskiPJDayalAZimmermanMDJablonskaKStewartAJStructural and immunologic characterization of bovine, horse, and rabbit serum albuminsMol Immunol2012521748210.1016/j.molimm.2012.05.011340133122677715Search in Google Scholar

Huang BX, Kim H-Y, Dass CJ. Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. J Am Soc Mass Spectrom. 2004; 15:1237–47.HuangBXKimH-YDassCJProbing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometryJ Am Soc Mass Spectrom20041512374710.1016/j.jasms.2004.05.00415276171Search in Google Scholar

Kovács AN, Varga N, Gombár G, Hornok V, Csapó E. Novel feasibilities for preparation of serum albumin-based core-shell nanoparticles in flow conditions. J Flow Chem. 2020. doi: 10.1007/s41981-020-00088-4KovácsANVargaNGombárGHornokVCsapóENovel feasibilities for preparation of serum albumin-based core-shell nanoparticles in flow conditionsJ Flow Chem.202010.1007/s41981-020-00088-4Open DOISearch in Google Scholar

Li FQ, Su H, Wang J, Liu JY, Zhu QG, Fei YB, et al. Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. Int J Pharm. 2008; 349:274–82.LiFQSuHWangJLiuJYZhuQGFeiYBPreparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targetingInt J Pharm20083492748210.1016/j.ijpharm.2007.08.00117870261Search in Google Scholar

Jithan AV, Madhavi K, Madhavi M, Prabhakar K. Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. Int J Pharm Investig. 2011; 1:119–25.JithanAVMadhaviKMadhaviMPrabhakarKPreparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancerInt J Pharm Investig201111192510.4103/2230-973X.82432346513023071931Search in Google Scholar

Uhle ESB, Costa BC, Ximenes VF, Filho PNL. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol Sci Appl. 2017; 10:11–21.UhleESBCostaBCXimenesVFFilhoPNLSynthetic nanoparticles of bovine serum albumin with entrapped salicylic acidNanotechnol Sci Appl201710112110.2147/NSA.S117018520745128096662Search in Google Scholar

Amighi F, Emam-Djomeh Z, Labbaf-Mazraeh-Shahi M. Effect of different cross-linking agents on the preparation of bovine serum albumin nanoparticles. J Iran Chem Soc. 2020; 17:1223–35.AmighiFEmam-DjomehZLabbaf-Mazraeh-ShahiMEffect of different cross-linking agents on the preparation of bovine serum albumin nanoparticlesJ Iran Chem Soc20201712233510.1007/s13738-019-01850-9Search in Google Scholar

Esfahlan AJ, Dastmalchi S, Davaran S. A simple desolvation method for the rapid preparation of albumin nanoparticles. Int J Biol Macromol. 2016; 91:703–9.EsfahlanAJDastmalchiSDavaranSA simple desolvation method for the rapid preparation of albumin nanoparticlesInt J Biol Macromol201691703910.1016/j.ijbiomac.2016.05.03227177461Search in Google Scholar

Galisteo-González F, Molina-Bolívar JA. Systematic study on the preparation of BSA nanoparticles. Colloids Surf B Biointerfaces. 2014; 123:286–92.Galisteo-GonzálezFMolina-BolívarJASystematic study on the preparation of BSA nanoparticlesColloids Surf B Biointerfaces20141232869210.1016/j.colsurfb.2014.09.02825262407Search in Google Scholar

Rohiwal SS, Pawar SH. Synthesis and characterization of bovine serum albumin nanoparticles as a drug delivery vehicle. Int J Pharm Bio Sci. 2014; 5(4):(B)51–7.RohiwalSSPawarSHSynthesis and characterization of bovine serum albumin nanoparticles as a drug delivery vehicleInt J Pharm Bio Sci201454(B)517Search in Google Scholar

Paik S-Y-R, Nguyen HH, Ryu J, Che J-H, Kang TS, Lee JK, et al. Robust size control of bovine serum albumin (BSA) nanoparticles by intermittent addition of a desolvating agent and the particle formation mechanism. Food Chem. 2013; 141:695–701.PaikS-Y-RNguyenHHRyuJCheJ-HKangTSLeeJKRobust size control of bovine serum albumin (BSA) nanoparticles by intermittent addition of a desolvating agent and the particle formation mechanismFood Chem201314169570110.1016/j.foodchem.2013.04.05923790836Search in Google Scholar

Yedomon B, Fessi H, Charcosset C. Preparation of bovine serum albumin (BSA) nanoparticles using a membrane contactor: a new tool for large scale production. Eur J Pharma Biopharm. 2013; 85:398–405.YedomonBFessiHCharcossetCPreparation of bovine serum albumin (BSA) nanoparticles using a membrane contactor: a new tool for large scale productionEur J Pharma Biopharm20138539840510.1016/j.ejpb.2013.06.01423811438Search in Google Scholar

Prajapati A, Srivastava A, Pramanik P. A simple and reproducible method for production of protein nanoparticles at biological pH using egg white. Biointerface Res App Chem. 2019; 9:3783–9.PrajapatiASrivastavaAPramanikPA simple and reproducible method for production of protein nanoparticles at biological pH using egg whiteBiointerface Res App Chem201993783910.33263/BRIAC91.783789Search in Google Scholar

Lamichhane S, Lee S. Albumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapy. Arch Pharm Res. 2020; 43:118–33.LamichhaneSLeeSAlbumin nanoscience: homing nanotechnology enabling targeted drug delivery and therapyArch Pharm Res2020431183310.1007/s12272-020-01204-731916145Search in Google Scholar

Karami K, Jamshidian N, Hajiaghasi A, Amirghofran Z. BSA nanoparticles as controlled release carriers for isophethalaldoxime palladacycle complex; synthesis, characterization, in vitro evaluation, cytotoxicity and release kinetics analysis. New J Chem. 2020. doi: 10.1039/c9nj05847hKaramiKJamshidianNHajiaghasiAAmirghofranZBSA nanoparticles as controlled release carriers for isophethalaldoxime palladacycle complex; synthesis, characterization, in vitro evaluation, cytotoxicity and release kinetics analysisNew J Chem.202010.1039/c9nj05847hOpen DOISearch in Google Scholar

Dreis S, Rothweiler F, Michaelis M, Cinatl J Jr, Kreuter J, Langer K. Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int J Pharm. 2007; 341:207–14.DreisSRothweilerFMichaelisMCinatlJJrKreuterJLangerKPreparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticlesInt J Pharm20073412071410.1016/j.ijpharm.2007.03.036Search in Google Scholar

Singh P, Singh H, Castro-Aceituno VC, Ahn S, Kim YJ, Yang DC. Bovine serum albumin as nanocarrier for the efficient delivery of ginsenoside compound K: preparation, physiochemical characterizations and in vitro biological studies. RSC Adv. 2017; 7:15397–407.SinghPSinghHCastro-AceitunoVCAhnSKimYJYangDCBovine serum albumin as nanocarrier for the efficient delivery of ginsenoside compound K: preparation, physiochemical characterizations and in vitro biological studiesRSC Adv201771539740710.1039/C6RA25264HSearch in Google Scholar

Fernandez M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem Sci. 2018; 9:790–810.FernandezMJavaidFChudasamaVAdvances in targeting the folate receptor in the treatment/imaging of cancersChem Sci2018979081010.1039/C7SC04004KSearch in Google Scholar

Martínez A, Olmo R, Iglesias I, Teijón JM, Blanco MD. Folate-targeted nanoparticles based on albumin and albumin/alginate mixtures as controlled release systems of tamoxifen: synthesis and in vitro characterization. Pharm Res. 2014; 31:182–93.MartínezAOlmoRIglesiasITeijónJMBlancoMDFolate-targeted nanoparticles based on albumin and albumin/alginate mixtures as controlled release systems of tamoxifen: synthesis and in vitro characterizationPharm Res2014311829310.1007/s11095-013-1151-zSearch in Google Scholar

Qi L, Guo Y, Luan J, Zhang D, Zhao Z, Luan Y. Folate-modified bexarotene-loaded bovine serum albumin nanoparticles as a promising tumor targeting delivery system. J Mater Chem B. 2014; 2:8361–71.QiLGuoYLuanJZhangDZhaoZLuanYFolate-modified bexarotene-loaded bovine serum albumin nanoparticles as a promising tumor targeting delivery systemJ Mater Chem B2014283617110.1039/C4TB01102CSearch in Google Scholar

Chen D, Tang Q, Xue W, Xiang J, Zhang L, Wang X. The preparation and characterization of folate-conjugated human serum albumin magnetic cisplatin nanoparticles. J Biomed Res. 2010; 24:26–32.ChenDTangQXueWXiangJZhangLWangXThe preparation and characterization of folate-conjugated human serum albumin magnetic cisplatin nanoparticlesJ Biomed Res201024263210.1016/S1674-8301(10)60005-XSearch in Google Scholar

Nosrati H, Abbasi R, Charmi J, Rakhshbahar A, Aliakbarzadeh F, Danafar H, Davaran S. Folic acid conjugated bovine serum albumin: An efficient smart and tumor targeted biomacromolecule for inhibition folate receptor positive cancer cells. Int J Biol Macromol. 2018; 117:1125–32.NosratiHAbbasiRCharmiJRakhshbaharAAliakbarzadehFDanafarHDavaranSFolic acid conjugated bovine serum albumin: An efficient smart and tumor targeted biomacromolecule for inhibition folate receptor positive cancer cellsInt J Biol Macromol201811711253210.1016/j.ijbiomac.2018.06.02629885392Search in Google Scholar

Mohammad-Beigi H, Shojaosadati SA, Morshedi D, Arpanaei A, Marvian AT. Preparation and in vitro characterization of gallic acid loaded human serum albumin nanoparticles. J Nanopart Res. 2015; 17:167. doi: 10.1007/s11051-015-2978-5Mohammad-BeigiHShojaosadatiSAMorshediDArpanaeiAMarvianATPreparation and in vitro characterization of gallic acid loaded human serum albumin nanoparticlesJ Nanopart Res20151716710.1007/s11051-015-2978-5Open DOISearch in Google Scholar

Abbasi S, Paul A, Shao W, Prakash S. Cationic albumin nanoparticles for enhanced drug delivery to treat breast cancer: preparation and in vitro assessment. J Drug Deliv. 2012; 2012:686108. doi: 10.1155/2012/686108AbbasiSPaulAShaoWPrakashSCationic albumin nanoparticles for enhanced drug delivery to treat breast cancer: preparation and in vitro assessmentJ Drug Deliv2012201268610810.1155/2012/686108323650622187654Open DOISearch in Google Scholar

Kouchakzadeha H, Shojaosadati SA, Shokri F. Efficient loading and entrapment of tamoxifen in human serum albumin based nanoparticulate delivery system by a modified desolvation technique. Chem Eng Res Des. 2014; 92:1681–92.KouchakzadehaHShojaosadatiSAShokriFEfficient loading and entrapment of tamoxifen in human serum albumin based nanoparticulate delivery system by a modified desolvation techniqueChem Eng Res Des20149216819210.1016/j.cherd.2013.11.024Search in Google Scholar

Li C, Zhang D, Guo H, Hao L, Zheng D, Liu G, et al. Preparation and characterization of galactosylated bovine serum albumin nanoparticles for liver-targeted delivery of oridonin. Int J Pharm. 2013; 448:79–86.LiCZhangDGuoHHaoLZhengDLiuGPreparation and characterization of galactosylated bovine serum albumin nanoparticles for liver-targeted delivery of oridoninInt J Pharm2013448798610.1016/j.ijpharm.2013.03.01923518367Search in Google Scholar

Shen Z, Wei W, Tanaka H, Kohama K, Ma G, Dobashi T, et al. A galactosamine mediated drug delivery carrier for targeted liver cancer therapy. Pharmacol Res. 2011; 64:410–9.ShenZWeiWTanakaHKohamaKMaGDobashiTA galactosamine mediated drug delivery carrier for targeted liver cancer therapyPharmacol Res201164410910.1016/j.phrs.2011.06.01521723392Search in Google Scholar

Bolanos K, Kogan MJ, Araya E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int J Nanomedicine. 2019; 14:6387–406.BolanosKKoganMJArayaECapping gold nanoparticles with albumin to improve their biomedical propertiesInt J Nanomedicine201914638740610.2147/IJN.S210992669194431496693Search in Google Scholar

Blaszkiewicz P, Kotkowiak M. Gold-based nanoparticles systems in phototherapy-current strategies. Curr Med Chem. 2018; 25:5914–29.BlaszkiewiczPKotkowiakMGold-based nanoparticles systems in phototherapy-current strategiesCurr Med Chem20182559142910.2174/092986732566618103112075730378476Search in Google Scholar

Peralta DV, Heidari Z, Dash S, Tarr MA. Hybrid paclitaxel and gold nanorod-loaded human serum albumin nanoparticles for simultaneous chemotherapeutic and photothermal therapy on 4T1 breast cancer cells. ACS Appl Mater Interfaces. 2015; 7:7101–11.PeraltaDVHeidariZDashSTarrMAHybrid paclitaxel and gold nanorod-loaded human serum albumin nanoparticles for simultaneous chemotherapeutic and photothermal therapy on 4T1 breast cancer cellsACS Appl Mater Interfaces2015771011110.1021/acsami.5b0085825768122Search in Google Scholar

Lu H, Noorani L, Jiang Y, Du AW, Stenzel MH. Penetration and drug delivery of albumin nanoparticles into pancreatic multicellular tumor spheroids. J Mater Chem B. 2017; 5:9591–9.LuHNooraniLJiangYDuAWStenzelMHPenetration and drug delivery of albumin nanoparticles into pancreatic multicellular tumor spheroidsJ Mater Chem B201759591910.1039/C7TB02902K32264572Search in Google Scholar

Ruan C, Liu L, Lu Y, Zhang Y, He X, Chen X, et al. Substance P-modified human serum albumin nanoparticles loaded with paclitaxel for targeted therapy of glioma. Acta Pharmaceutica Sinica B. 2017; 8:85–96.RuanCLiuLLuYZhangYHeXChenXSubstance P-modified human serum albumin nanoparticles loaded with paclitaxel for targeted therapy of gliomaActa Pharmaceutica Sinica B20178859610.1016/j.apsb.2017.09.008598562729872625Search in Google Scholar

Nosrati H, Salehibar M, Manjili HK, Danafar H, Davaran S. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical application. Int J Biol Macromol. 2018; 108:909–15.NosratiHSalehibarMManjiliHKDanafarHDavaranSPreparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applicationInt J Biol Macromol20181089091510.1016/j.ijbiomac.2017.10.18029101048Search in Google Scholar

Nosrati H, Sefidi N, Sharafi A, Danafar H, Manjili HK. Bovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug. Bioorg Chem. 2018; 76:501–9.NosratiHSefidiNSharafiADanafarHManjiliHKBovine serum albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drugBioorg Chem201876501910.1016/j.bioorg.2017.12.03329310081Search in Google Scholar

Delfiyal DSA, Thangavell K, Amirtham D. Preparation of curcumin loaded egg albumin nanoparticles using acetone and optimization of desolvation process. Protein J. 2016; 35:124–35.DelfiyalDSAThangavellKAmirthamDPreparation of curcumin loaded egg albumin nanoparticles using acetone and optimization of desolvation processProtein J2016351243510.1007/s10930-016-9652-326960679Search in Google Scholar

Prajapati A, Srivastava A. Characterization and encapsulation efficiency of egg albumin nanoparticles using EDC as crosslinker. J Sci Ind Res. 2019; 78:703–5.PrajapatiASrivastavaACharacterization and encapsulation efficiency of egg albumin nanoparticles using EDC as crosslinkerJ Sci Ind Res2019787035Search in Google Scholar

Olaitan V, Chaw CS. Desolvation conditions for production of sulfasalazine based albumin nanoparticles: physical properties. Pharm Front. 2019; 1:e190006. doi: 10.20900/pf20190006OlaitanVChawCSDesolvation conditions for production of sulfasalazine based albumin nanoparticles: physical propertiesPharm Front20191e19000610.20900/pf20190006Open DOISearch in Google Scholar

Salehiabar M, Nosrati H, Javani E, Aliakbarzadeh F, Manjili HK, Davaran S, Danafar H. Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery. Int J Biol Macromol. 2018; 115:83–9.SalehiabarMNosratiHJavaniEAliakbarzadehFManjiliHKDavaranSDanafarHProduction of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin deliveryInt J Biol Macromol201811583910.1016/j.ijbiomac.2018.04.04329653171Search in Google Scholar

Kimura K, Yamasaki K, Nakamura H, Haratake M, Taguchi K, Otagiri M. Preparation and in vitro analysis of human serum albumin nanoparticles loaded with anthracycline derivatives. Chem Pharm Bull (Tokyo). 2018; 66:382–90.KimuraKYamasakiKNakamuraHHaratakeMTaguchiKOtagiriMPreparation and in vitro analysis of human serum albumin nanoparticles loaded with anthracycline derivativesChem Pharm Bull (Tokyo)2018663829010.1248/cpb.c17-0083829607904Search in Google Scholar

Fallacara AL, Mancini A, Zamperini C, Dreassi E, Marianelli S, Chiariello M, et al. Pyrazolo[3,4-d]pyrimidines-loaded human serum albumin (HSA) nanoparticles: preparation, characterization and cytotoxicity evaluation against neuroblastoma cell line. Bioorg Med Chem Lett. 2017; 27:3196–200.FallacaraALManciniAZamperiniCDreassiEMarianelliSChiarielloMPyrazolo[3,4-d]pyrimidines-loaded human serum albumin (HSA) nanoparticles: preparation, characterization and cytotoxicity evaluation against neuroblastoma cell lineBioorg Med Chem Lett201727319620010.1016/j.bmcl.2017.05.01528558969Search in Google Scholar

Gawde KA, Kesharwani P, Sau S, Sarkar FH, Padhye S, Kashaw SK, Iyer AK. Synthesis and characterization of folate decorated albumin bio-conjugate nanoparticles loaded with a synthetic curcumin difluorinated analogue. J Colloid Interface Sci. 2017; 496:290–9.GawdeKAKesharwaniPSauSSarkarFHPadhyeSKashawSKIyerAKSynthesis and characterization of folate decorated albumin bio-conjugate nanoparticles loaded with a synthetic curcumin difluorinated analogueJ Colloid Interface Sci2017496290910.1016/j.jcis.2017.01.09228236692Search in Google Scholar

Verma D, Gulati N, Kaul S, Mukherjee S, Nagaich U. Protein based nanostructures for drug delivery. J Pharm (Cairo). 2018; 2018:9285854. doi: 10.1155/2018/9285854VermaDGulatiNKaulSMukherjeeSNagaichUProtein based nanostructures for drug deliveryJ Pharm (Cairo)20182018928585410.1155/2018/9285854597696129862118Open DOISearch in Google Scholar

Loureiro A, Azoiaa NG, Gomesb AC, Cavaco-Pauloa A. Albumin-based nanodevices as drug carriers. Curr Pharm Des. 2016; 22:1371–90.LoureiroAAzoiaaNGGomesbACCavaco-PauloaAAlbumin-based nanodevices as drug carriersCurr Pharm Des20162213719010.2174/138161282266616012511490026806342Search in Google Scholar

Tarhini M, Greige-Gerges H, Elaissari A. Protein-based nanoparticles: from preparation to encapsulation of active molecules. Int J Pharm. 2017; 522:172–97.TarhiniMGreige-GergesHElaissariAProtein-based nanoparticles: from preparation to encapsulation of active moleculesInt J Pharm20175221729710.1016/j.ijpharm.2017.01.06728188876Search in Google Scholar

Rai A, Jenifer J, Upputuri RTP. Nanoparticles in therapeutic applications and role of albumin and casein nanoparticles in cancer therapy. Asian Biomedicine. 2017; 11:3–20.RaiAJeniferJUpputuriRTPNanoparticles in therapeutic applications and role of albumin and casein nanoparticles in cancer therapyAsian Biomedicine201711320Search in Google Scholar

Szczęch M, Szczepanowicz K. Polymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer method. Nanomaterials (Basel). 2020; 10:496. doi: 10.3390/nano10030496SzczęchMSzczepanowiczKPolymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer methodNanomaterials (Basel)20201049610.3390/nano10030496715348132164194Open DOISearch in Google Scholar

Lei Y, Cui F, Cun D, Tao A, Shi K, Lin W. Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) nanoparticles. Int J Pharm. 2007; 340:163–72.LeiYCuiFCunDTaoAShiKLinWPreparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) nanoparticlesInt J Pharm20073401637210.1016/j.ijpharm.2007.03.02817482779Search in Google Scholar

Guo H, Fei S, Zhang Y, Zhang Y, Gou J, Zhang L, et al. Teniposide-loaded multilayer modified albumin nanoparticles with increased passive delivery to the lung. RSC Adv. 2016; 6:81110–19.GuoHFeiSZhangYZhangYGouJZhangLTeniposide-loaded multilayer modified albumin nanoparticles with increased passive delivery to the lungRSC Adv20166811101910.1039/C6RA07906GSearch in Google Scholar

Zhang JX, Zhu KJ. An improvement of double emulsion technique for preparing bovine serum albumin loaded PLGA microspheres. J Microencapsul. 2004; 21:775–85.ZhangJXZhuKJAn improvement of double emulsion technique for preparing bovine serum albumin loaded PLGA microspheresJ Microencapsul2004217758510.1080/0265204040000846515799227Search in Google Scholar

Demirkurt B, Akdogan GC, Akdogan Y. Preparation of albumin nanoparticles in water-in-ionic liquid micro emulsion. J Mol Liq. 2019; 295:111713. doi: 10.1016/j.molliq.2019.111713DemirkurtBAkdoganGCAkdoganYPreparation of albumin nanoparticles in water-in-ionic liquid micro emulsionJ Mol Liq201929511171310.1016/j.molliq.2019.111713Open DOISearch in Google Scholar

Rani K. Preparation of BSANPs by using modified emulsodesolvation method. Eur J Pharm Med Res. 2016; 3:290–2.RaniKPreparation of BSANPs by using modified emulsodesolvation methodEur J Pharm Med Res201632902Search in Google Scholar

Maryam K, Shakeri S, Kiani K. Preparation and in vitro investigation of antigastric cancer activities of carvacrol-loaded human serum albumin nanoparticles. IET Nanobiotechnol. 2015; 9:294–9.MaryamKShakeriSKianiKPreparation and in vitro investigation of antigastric cancer activities of carvacrol-loaded human serum albumin nanoparticlesIET Nanobiotechnol20159294910.1049/iet-nbt.2014.004026435283Search in Google Scholar

Lu R, Li WW, Katzir A, Raichlin Y, Yu HQ, Mizaikoff B. Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiber optic sensors. Analyst. 2015; 140:765–70.LuRLiWWKatzirARaichlinYYuHQMizaikoffBProbing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiber optic sensorsAnalyst20151407657010.1039/C4AN01495B25525641Search in Google Scholar

Jana S, Maji N, Nayak AK, Sen KK, Basu SK. Development of chitosan-based nanoparticles through inter polymeric complexation for oral drug delivery. Carbohydr Polym. 2013; 98:870–6.JanaSMajiNNayakAKSenKKBasuSKDevelopment of chitosan-based nanoparticles through inter polymeric complexation for oral drug deliveryCarbohydr Polym201398870610.1016/j.carbpol.2013.06.06423987423Search in Google Scholar

Jana S, Mannaa S, Nayakb AK, Sena KK, Basua SK. Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf B Biointerfaces. 2014; 114:36–44.JanaSMannaaSNayakbAKSenaKKBasuaSKCarbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac deliveryColloids Surf B Biointerfaces2014114364410.1016/j.colsurfb.2013.09.04524161504Search in Google Scholar

Papagiannopoulos A, Vlassi E. Stimuli-responsive nanoparticles by thermal treatment of bovine serum albumin inside its complexes with chondroitin sulfate. Food Hyd. 2019; 87:602–10.PapagiannopoulosAVlassiEStimuli-responsive nanoparticles by thermal treatment of bovine serum albumin inside its complexes with chondroitin sulfateFood Hyd2019876021010.1016/j.foodhyd.2018.08.054Search in Google Scholar

Thao LQ, Byeon HJ, Lee C, Lee S, Lee ES, Choi H-G, et al. Pharmaceutical potential of tacrolimus loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues. Int J Pharm. 2016; 497:268–76.ThaoLQByeonHJLeeCLeeSLeeESChoiH-GPharmaceutical potential of tacrolimus loaded albumin nanoparticles having targetability to rheumatoid arthritis tissuesInt J Pharm20164972687610.1016/j.ijpharm.2015.12.00426657273Search in Google Scholar

Yu X, Di Y, Xie C, Song Y, He H, Li H, et al. An in vitro and in vivo study of gemcitabine loaded albumin nanoparticles in a pancreatic cancer cell line. Int J Nanomedicine. 2015; 10:6825–34.YuXDiYXieCSongYHeHLiHAn in vitro and in vivo study of gemcitabine loaded albumin nanoparticles in a pancreatic cancer cell lineInt J Nanomedicine20151068253410.2147/IJN.S93835463616826586944Search in Google Scholar

Zhang Y, Yang Z, Tan X, Tang X, Yang Z. Development of a more efficient albumin-based delivery system for gambogic acid with low toxicity for lung cancer therapy. AAPS PharmSciTech. 2017; 18:1987–97.ZhangYYangZTanXTangXYangZDevelopment of a more efficient albumin-based delivery system for gambogic acid with low toxicity for lung cancer therapyAAPS PharmSciTech20171819879710.1208/s12249-016-0670-427933587Search in Google Scholar

Thao LQ, Lee C, Kim B, Lee S, Kim TH, Kim JO, et al. Doxorubicin and paclitaxel co-bound lactosylated albumin nanoparticles having targetability to hepatocellular carcinoma. Colloids Surf B Biointerfaces. 2017; 152:183–91.ThaoLQLeeCKimBLeeSKimTHKimJODoxorubicin and paclitaxel co-bound lactosylated albumin nanoparticles having targetability to hepatocellular carcinomaColloids Surf B Biointerfaces20171521839110.1016/j.colsurfb.2017.01.01728110040Search in Google Scholar

Saha S, Kundu J, Verma RJ, Chowdhury PK. Albumin coated polymer nanoparticles loaded with plant extract derived quercetin for modulation of inflammation. Materialia. 2020; 9:100605. doi: 10.1016/j.mtla.2020.100605SahaSKunduJVermaRJChowdhuryPKAlbumin coated polymer nanoparticles loaded with plant extract derived quercetin for modulation of inflammationMaterialia2020910060510.1016/j.mtla.2020.100605Open DOISearch in Google Scholar

Li H, Zhao J, Wang A, Li Q, Cui W. Supramolecular assembly of protein-based nanoparticles based on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) for cancer therapy. Colloids Surf A Physicochem Eng Aspects. 2020; 590:124486. doi: 10.1016/j.colsurfa.2020.124486LiHZhaoJWangALiQCuiWSupramolecular assembly of protein-based nanoparticles based on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) for cancer therapyColloids Surf A Physicochem Eng Aspects202059012448610.1016/j.colsurfa.2020.124486Open DOISearch in Google Scholar

Ding D, Tang X, Cao X, Wu J, Yuan A, Qiao Q, et al. Novel self-assembly endows human serum albumin nanoparticles with an enhanced antitumor efficacy. AAPS Pharm Sci Tech. 2014; 5:213–22.DingDTangXCaoXWuJYuanAQiaoQNovel self-assembly endows human serum albumin nanoparticles with an enhanced antitumor efficacyAAPS Pharm Sci Tech201452132210.1208/s12249-013-0041-3390915524287627Search in Google Scholar

Wang S, Gong G, Su H, Liu W, Wang Z, Li L. Self-assembly of plasma protein through disulfide bond breaking and its use as a nanocarrier for lipophilic drugs. Polym Chem. 2014; 5:4871–4.WangSGongGSuHLiuWWangZLiLSelf-assembly of plasma protein through disulfide bond breaking and its use as a nanocarrier for lipophilic drugsPolym Chem201454871410.1039/C4PY00212ASearch in Google Scholar

Battogtokh G, Kang JH, Ko YT. Long-circulating self-assembled cholesteryl albumin nanoparticles enhance tumor accumulation of hydrophobic anticancer drug. Eur J Pharm Biopharm. 2015; 96:96–105.BattogtokhGKangJHKoYTLong-circulating self-assembled cholesteryl albumin nanoparticles enhance tumor accumulation of hydrophobic anticancer drugEur J Pharm Biopharm2015969610510.1016/j.ejpb.2015.07.01326212785Search in Google Scholar

Xu L, He XY, Liu BY, Xu C, Ai SL, Zhuo RX, Cheng SX. Aptamer functionalized albumin based nanoparticles for targeted drug delivery. Colloids Surf B Biointerfaces. 2018; 1 71:24–30.XuLHeXYLiuBYXuCAiSLZhuoRXChengSXAptamer functionalized albumin based nanoparticles for targeted drug deliveryColloids Surf B Biointerfaces2018171243010.1016/j.colsurfb.2018.07.00830005287Search in Google Scholar

Safavi MS, Shojaosadati SA, Yang HG, Kim Y, Park EJ, Lee KC, Na DH. Reducing agent-free synthesis of curcumin-loaded albumin nanoparticles by self-assembly at room temperature. Int J Pharm. 2017; 529:303–9.SafaviMSShojaosadatiSAYangHGKimYParkEJLeeKCNaDHReducing agent-free synthesis of curcumin-loaded albumin nanoparticles by self-assembly at room temperatureInt J Pharm2017529303910.1016/j.ijpharm.2017.06.08728669624Search in Google Scholar

Lee JE, Kim MG, Jang YL, Lee MS, Kim NW, Yin Y, et al. Self-assembled PEGylated albumin nanoparticles (SPAN) as a platform for cancer chemotherapy and imaging. Drug Deliv. 2018; 25:1570–8.LeeJEKimMGJangYLLeeMSKimNWYinYSelf-assembled PEGylated albumin nanoparticles (SPAN) as a platform for cancer chemotherapy and imagingDrug Deliv2018251570810.1080/10717544.2018.1489430606038030044159Search in Google Scholar

Arpagaus C, Collenberg A, Rütti D, Assadpour E, Jafari SM. Nano spray drying for encapsulation of pharmaceuticals. Int J Pharm. 2018; 546:194–214.ArpagausCCollenbergARüttiDAssadpourEJafariSMNano spray drying for encapsulation of pharmaceuticalsInt J Pharm201854619421410.1016/j.ijpharm.2018.05.03729778825Search in Google Scholar

Arpagaus C. PLA/PLGA nanoparticles prepared by nano spray drying. J Pharm Invest. 2019; 49:405–26.ArpagausCPLA/PLGA nanoparticles prepared by nano spray dryingJ Pharm Invest2019494052610.1007/s40005-019-00441-3Search in Google Scholar

Lee SH, Heng D, Ng WK, Chan HK, Tan RBH. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm. 2011; 403:192–200.LeeSHHengDNgWKChanHKTanRBHNano spray drying: a novel method for preparing protein nanoparticles for protein therapyInt J Pharm201140319220010.1016/j.ijpharm.2010.10.01220951781Search in Google Scholar

Arpagaus C, John P, Collenberg A, Rütti D. Nanocapsules formation by nano spray drying. In: Jafari SM editor, Nanoencapsulation technologies for the food and nutraceutical industries. Cambridge, MA: Academic Press, 2017; p 346–401.ArpagausCJohnPCollenbergARüttiDNanocapsules formation by nano spray dryingIn:JafariSMeditor,Nanoencapsulation technologies for the food and nutraceutical industriesCambridge, MAAcademic Press201734640110.1016/B978-0-12-809436-5.00010-0Search in Google Scholar

Bürki K, Jeon I, Arpagaus C, Betz G. New insights into respirable protein powder preparation using a nano spray dryer. Inter J Pharm. 2011; 408:248–56.BürkiKJeonIArpagausCBetzGNew insights into respirable protein powder preparation using a nano spray dryerInter J Pharm20114082485610.1016/j.ijpharm.2011.02.01221335078Search in Google Scholar

eISSN:
1875-855X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine