Open Access

Using Own Algorithms to Increase the Quality and Fatigue Resistance of FDM Printing for Use in Drones and Small Aircraft


Cite

Afrose, M. F., Masood, S. H., Iovenitti, P., Nikzad, M., & Sbarski, I. (2016). Effects of part build orientations on fatigue behaviour of FDM-processed PLA material. Progress in Additive Manufacturing, 1(1-2), 21–28. https://doi.org/10.1007/s40964-015-0002-3 Afrose M. F. Masood S. H. Iovenitti P. Nikzad M. Sbarski I. ( 2016 ). Effects of part build orientations on fatigue behaviour of FDM-processed PLA material . Progress in Additive Manufacturing , 1 ( 1-2 ), 21 28 . https://doi.org/10.1007/s40964-015-0002-3 Search in Google Scholar

Ahmadi, R., D’Andrea, D., & Santonocito, D. (2023). Fatigue assessment of 3D-printed porous PLA-based scaffold structures by Thermographic Methods. IOP Conference Series: Materials Science and Engineering, 1275(1), 012002. https://doi.org/10.1088/1757-899x/1275/1/012002 Ahmadi R. D’Andrea D. Santonocito D. ( 2023 ). Fatigue assessment of 3D-printed porous PLA-based scaffold structures by Thermographic Methods . IOP Conference Series: Materials Science and Engineering , 1275 ( 1 ), 012002 . https://doi.org/10.1088/1757-899x/1275/1/012002 Search in Google Scholar

Algarni, M. (2022). Fatigue behavior of PLA material and the effects of mean stress and notch: Experiments and modeling. Procedia Structural Integrity, 37, 676–683. https://doi.org/10.1016/j.prostr.2022.01.137 Algarni M. ( 2022 ). Fatigue behavior of PLA material and the effects of mean stress and notch: Experiments and modeling . Procedia Structural Integrity , 37 , 676 683 . https://doi.org/10.1016/j.prostr.2022.01.137 Search in Google Scholar

Azadi, M., Dadashi, A., Dezianian, S., Kianifar, M., Torkaman, S., & Chiyani, M. (2021). High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing. Forces in Mechanics, 3, 100016. https://doi.org/10.1016/j.finmec.2021.100016 Azadi M. Dadashi A. Dezianian S. Kianifar M. Torkaman S. Chiyani M. ( 2021 ). High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing . Forces in Mechanics , 3 , 100016 . https://doi.org/10.1016/j.finmec.2021.100016 Search in Google Scholar

Ezeh, O. H., & Susmel, L. (2018). On the fatigue strength of 3D-printed polylactide (PLA). Procedia Structural Integrity, 9, 29–36. https://doi.org/10.1016/j.prostr.2018. 06.007 Ezeh O. H. Susmel L. ( 2018 ). On the fatigue strength of 3D-printed polylactide (PLA) . Procedia Structural Integrity , 9 , 29 36 . https://doi.org/10.1016/j.prostr.2018.06.007 Search in Google Scholar

France, A. K. (2014). Świat druku 3D. Przewodnik. Kompedium wiedzy o druku SD [Make 3D Printing. The Essential Guide to 3D Printers]. Helion. France A. K. ( 2014 ). Świat druku 3D. Przewodnik. Kompedium wiedzy o druku SD [Make 3D Printing. The Essential Guide to 3D Printers] . Helion . Search in Google Scholar

Guide to Tensile Strength | OneMonroe. (n.d.). Home | OneMonroe. Access 26 Nov 2023 https://monroeengineering.com/info-general-guide-tensile-strength.php Guide to Tensile Strength | OneMonroe . (n.d.). Home | OneMonroe . Access 26 Nov 2023 https://monroeengineering.com/info-general-guide-tensile-strength.php Search in Google Scholar

Mueller, M., Sleger, V., Kolar, V., Hromasova, M., Pis, D., & Mishra, R. K. (2022). Low-cycle fatigue behavior of 3D-printed PLA reinforced with natural filler. Polymers, 14(7), 1301. https://doi.org/10.3390/polym14071301 Mueller M. Sleger V. Kolar V. Hromasova M. Pis D. Mishra R. K. ( 2022 ). Low-cycle fatigue behavior of 3D-printed PLA reinforced with natural filler . Polymers , 14 ( 7 ), 1301 . https://doi.org/10.3390/polym14071301 Search in Google Scholar

Szafran, K. S., & Kramarski, I. (2019). Fatigue degradation of the ram-air parachute canopy structure. Fatigue of Aircraft Structures, 2019(11), 103–112. https://doi.org/10.2478/fas-2019-0010 Szafran K. S. Kramarski I. ( 2019 ). Fatigue degradation of the ram-air parachute canopy structure . Fatigue of Aircraft Structures , 2019 ( 11 ), 103 112 . https://doi.org/10.2478/fas-2019-0010 Search in Google Scholar

Szafran, K. S., & Michalczyk, M. (2021). Research on hovercraft – fatigue cracks in the engine frame. Fatigue of Aircraft Structures, 2021(13), 106–115. https://doi.org/10.2478/fas-2021-0010 Szafran K. S. Michalczyk M. ( 2021 ). Research on hovercraft – fatigue cracks in the engine frame . Fatigue of Aircraft Structures , 2021 ( 13 ), 106 115 . https://doi.org/10.2478/fas-2021-0010 Search in Google Scholar

Travieso-Rodriguez, J. A., Jerez-Mesa, R., Llumà, J., Traver-Ramos, O., Gomez-Gras, G., & Roa Rovira, J. J. (2019). Mechanical properties of 3D-printing polylactic acid parts subjected to bending stress and fatigue testing. Materials, 12(23), 3859. https://doi.org/10.3390/ma12233859 Travieso-Rodriguez J. A. Jerez-Mesa R. Llumà J. Traver-Ramos O. Gomez-Gras G. Roa Rovira J. J. ( 2019 ). Mechanical properties of 3D-printing polylactic acid parts subjected to bending stress and fatigue testing . Materials , 12 ( 23 ), 3859 . https://doi.org/10.3390/ma12233859 Search in Google Scholar

eISSN:
2300-7591
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other