Open Access

Investigating the Effects of Crack Orientation and Defects on Pipeline Fatigue Life Through Finite Element Analysis


Cite

Alberta Energy Regulator. (2020). Pipeline Performance (New Reports). https://www.aer.ca/protecting-what-matters/holding-industry-accountable/industryperformance/pipeline-performance Alberta Energy Regulator . ( 2020 ). Pipeline Performance (New Reports) . https://www.aer.ca/protecting-what-matters/holding-industry-accountable/industryperformance/pipeline-performance Search in Google Scholar

Augustin, P. (2009). Simulation of fatigue crack growth in integrally stiffened panels under the constant amplitude and spectrum loadin. Fatigue of Aircraft Structures, 2009(1), 5–19. https://doi.org/10.2478/v10164-010-0001-2 Augustin P. ( 2009 ). Simulation of fatigue crack growth in integrally stiffened panels under the constant amplitude and spectrum loadin . Fatigue of Aircraft Structures , 2009 ( 1 ), 5 19 . https://doi.org/10.2478/v10164-010-0001-2 Search in Google Scholar

Ballantyne, D. (2008). M7.8 Southern San Andreas Fault Earthquake Scenario: Oil and Gas Pipelines (California Geological Survey Preliminary Report 25 version 1.0). MMI Engineering. Ballantyne D. ( 2008 ). M7.8 Southern San Andreas Fault Earthquake Scenario: Oil and Gas Pipelines (California Geological Survey Preliminary Report 25 version 1.0) . MMI Engineering . Search in Google Scholar

Benachour, M., Benachour, N., & Benguediab, M. (2017). Fractograpic observations and effect of stress ratio on fatigue striations spacing in aluminium alloy 2024 T351. Materials Science Forum, 887, 3–8. https://doi.org/10.4028/www.scientific.net/msf.887.3 Benachour M. Benachour N. Benguediab M. ( 2017 ). Fractograpic observations and effect of stress ratio on fatigue striations spacing in aluminium alloy 2024 T351 . Materials Science Forum , 887 , 3 8 . https://doi.org/10.4028/www.scientific.net/msf.887.3 Search in Google Scholar

Benhamena, A., Aminallah, L., Bouiadjra, B. B., Benguediab, M., Amrouche, A., & Benseddiq, N. (2011). J integral solution for semi-elliptical surface crack in high density poly-ethylene pipe under bending. Materials & Design, 32(5), 2561–2569. https://doi.org/10.1016/j.matdes.2011.01.045 Benhamena A. Aminallah L. Bouiadjra B. B. Benguediab M. Amrouche A. Benseddiq N. ( 2011 ). J integral solution for semi-elliptical surface crack in high density poly-ethylene pipe under bending . Materials & Design , 32 ( 5 ), 2561 2569 . https://doi.org/10.1016/j.matdes.2011.01.045 Search in Google Scholar

Bibly, B. A., Cotrell, A. H., & Swinden, K. H. (1963). The spread of plastic yield from a notch. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 272(1350), 304–314. https://doi.org/10.1098/rspa.1963.0055 Bibly B. A. Cotrell A. H. Swinden K. H. ( 1963 ). The spread of plastic yield from a notch . Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences , 272 ( 1350 ), 304 314 . https://doi.org/10.1098/rspa.1963.0055 Search in Google Scholar

Broek, D. (1989). The practical use of fracture mechanics. Kluwer Academic Publishers. https://doi.org/10.1002/mawe.19890200504 Broek D. ( 1989 ). The practical use offracture mechanics . Kluwer Academic Publishers . https://doi.org/10.1002/mawe.19890200504 Search in Google Scholar

Chen, Y., Zhang, H., Zhang, J., Liu, X., Li, X., & Zhou, J. (2015). Failure assessment of X80 pipeline with interacting corrosion defects. Engineering Failure Analysis, 47, 67–76. https://doi.org/10.1016/j.engfailanal.2014.09.013 Chen Y. Zhang H. Zhang J. Liu X. Li X. Zhou J. ( 2015 ). Failure assessment of X80 pipeline with interacting corrosion defects . Engineering Failure Analysis , 47 , 67 76 . https://doi.org/10.1016/j.engfailanal.2014.09.013 Search in Google Scholar

Cristoffanini, C., Karkare, M., & Aceituno, M. (2014). Transient simulation of longdistance tailings and concentrate pipelines for operator training. Presented at SME Annual Meeting/Exhibit, February 24-26, 2014, Salt Lake City, UT, USA, 1–7. https://www.andritz.com/resource/blob/15062/50bf8f04c35997dbce9c51b8b3d2fab3/aa-dynamic-simulation-long-tailings-concentrate-pipelines-data.pdf Cristoffanini C. Karkare M. Aceituno M. ( 2014 ). Transient simulation of longdistance tailings and concentrate pipelines for operator training . Presented at SME Annual Meeting/Exhibit, February 24-26, 2014, Salt Lake City, UT, USA , 1 7 . https://www.andritz.com/resource/blob/15062/50bf8f04c35997dbce9c51b8b3d2fab3/aa-dynamic-simulation-long-tailings-concentrate-pipelines-data.pdf Search in Google Scholar

Czaban, M. (2018). Aircraft corrosion – review of corrosion processes and its effects in selected cases. Fatigue of Aircraft Structures, 2018(10), 5–20. https://doi.org/10.2478/fas-2018-0001 Czaban M. ( 2018 ). Aircraft corrosion – review of corrosion processes and its effects in selected cases . Fatigue of Aircraft Structures , 2018 ( 10 ), 5 20 . https://doi.org/10.2478/fas-2018-0001 Search in Google Scholar

Elber, W. (1970). Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics, 2, 445–476. Elber W. ( 1970 ). Fatigue crack closure under cyclic tension . Engineering Fracture Mechanics , 2 , 445 476 . Search in Google Scholar

European Gas Pipeline Incident Data Group. (2020). Gas Pipeline Incidents: 11th Report of the European Gas Pipeline Incident Data Group (period 1970 – 2019) (Doc. number VA 20.0432). https://www.egig.eu/reports European Gas Pipeline Incident Data Group . ( 2020 ). Gas Pipeline Incidents: 11th Report of the European Gas Pipeline Incident Data Group (period 1970 - 2019) (Doc. number VA 20.0432) . https://www.egig.eu/reports Search in Google Scholar

Fatigue crack growth computer program ‘NASGRO’ version 3.0 - reference manual (Technical Report JSC-22267B). (2001). NASA. http://www.nasgro.swri.org Fatigue crack growth computer program ‘NASGRO ‘ version 3.0 - reference manual (Technical Report JSC-22267B) . ( 2001 ). NASA . http://www.nasgro.swri.org Search in Google Scholar

Forman, R. G., Kearney, V. E., & Engle, R. M. (1967). Numerical analysis of crack propagation in cyclic-loaded structures. Journal of Basic Engineering, 89(3), 459–463. https://doi.org/10.1115/1.3609637 Forman R. G. Kearney V. E. Engle R. M. ( 1967 ). Numerical analysis of crack propagation in cyclic-loaded structures . Journal of Basic Engineering , 89 ( 3 ), 459 463 . https://doi.org/10.1115/1.3609637 Search in Google Scholar

Fuiorea, I., Bartis, D., Nedelcu, R., & Frunzulica, F. (2009). Numerical models for fatigue crack evolution study. Fatigue of Aircraft Structures, 2009(1), 42–49. https://doi.org/10.2478/v10164-010-0004-z Fuiorea I. Bartis D. Nedelcu R. Frunzulica F. ( 2009 ). Numerical models for fatigue crack evolution study . Fatigue of Aircraft Structures , 2009 ( 1 ), 42 49 . https://doi.org/10.2478/v10164-010-0004-z Search in Google Scholar

Harter, J. A. (2002). AFGROW users guide and technical manual. (Technical Report AFRL-VA-WP-TR-2002-XXX). U.S. Air Force Research Laboratory. http://afgrow.wpafb.af.mil Harter J. A. ( 2002 ). AFGROW users guide and technical manual . (Technical Report AFRL-VA-WP-TR-2002-XXX). U.S. Air Force Research Laboratory . http://afgrow.wpafb.af.mil Search in Google Scholar

Hredil, M., Krechkovska, H., Tsyrulnyk, O., & Student, O. (2020). Fatigue crack growth in operated gas pipeline steels. Procedia Structural Integrity, 26, 409–416. https://doi.org/10.1016/j.prostr.2020.06.052 Hredil M. Krechkovska H. Tsyrulnyk O. Student O. ( 2020 ). Fatigue crack growth in operated gas pipeline steels . Procedia Structural Integrity , 26 , 409 416 . https://doi.org/10.1016/j.prostr.2020.06.052 Search in Google Scholar

Irfan, O. M., & Omar, H. M. (2017). Experimental study and prediction of erosioncorrosion of AA6066 aluminum using artificial neural network. Engineering, Materials Science, 17(06), 17–31. https://www.ijens.org/IJMMEVol17Issue06.html Irfan O. M. Omar H. M. ( 2017 ). Experimental study and prediction of erosioncorrosion of AA6066 aluminum using artificial neural network . Engineering, Materials Science , 17 ( 06 ), 17 31 . https://www.ijens.org/IJMMEVol17Issue06.html Search in Google Scholar

Jasztal, M., Kocanda, D., & Tomaszek, H. (2010). Predicting fatigue crack growth and fatigue life under variable amplitude loading. Fatigue of Aircraft Structures, 2010(2), 37–51. https://doi.org/10.2478/v10164-010-0024-8 Jasztal M. Kocanda D. Tomaszek H. ( 2010 ). Predicting fatigue crack growth and fatigue life under variable amplitude loading . Fatigue of Aircraft Structures , 2010 ( 2 ), 37 51 . https://doi.org/10.2478/v10164-010-0024-8 Search in Google Scholar

Kaddouri, K., BachirBouaidjra, B., Belhouari, M., & Madani, K. (2004). Elastic plastic analysis of cracks in pipe. In 15th European Conference on Fracture: ECF 15 - advanced fracture mechanics for life and safety assessments: Aug.11 - 13, 2004, KTH Stockholm, Sweden. Kaddouri K. BachirBouaidjra B. Belhouari M. Madani K. ( 2004 ). Elastic plastic analysis of cracks in pipe . In 15th European Conference on Fracture: ECF 15 - advanced fracture mechanics for life and safety assessments: Aug.11 - 13, 2004, KTH Stockholm, Sweden . Search in Google Scholar

Kamińska, P., Synaszko, P., Ciężak, P., & Dragan, K. (2020). Analysis of the corrosion resistance of aircraft structure joints with double-sided rivets and single-sided rivets. Fatigue of Aircraft Structures, 2020(12), 57–68. https://doi.org/10.2478/fas-2020-0006 Kamińska P. Synaszko P. Ciężak P. Dragan K. ( 2020 ). Analysis of the corrosion resistance of aircraft structure joints with double-sided rivets and single-sided rivets . Fatigue of Aircraft Structures , 2020 ( 12 ), 57 68 . https://doi.org/10.2478/fas-2020-0006 Search in Google Scholar

Kebir, T., Benguediab, M., & Imad, A. (2017). A model for fatigue crack growth in the paris regime under the variability of cyclic hardening and elastic properties. Fatigue of Aircraft Structures, 2017(9), 117–135. https://doi.org/10.1515/fas-2017-0010 Kebir T. Benguediab M. Imad A. ( 2017 ). A model for fatigue crack growth in the paris regime under the variability of cyclic hardening and elastic properties . Fatigue of Aircraft Structures , 2017 ( 9 ), 117 135 . https://doi.org/10.1515/fas-2017-0010 Search in Google Scholar

Kebir, T., Correia, J. A. F. O., Benguediab, M., & Imad, A. (2021). A FCG model and the graphical user interface under Matlab for predicting fatigue life: Parametric studies. Fatigue of Aircraft Structures, 2021(13), 116–139. https://doi.org/10.2478/fas-2021-0011 Kebir T. Correia J. A. F. O. Benguediab M. Imad A. ( 2021 ). A FCG model and the graphical user interface under Matlab for predicting fatigue life: Parametric studies . Fatigue of Aircraft Structures , 2021 ( 13 ), 116 139 . https://doi.org/10.2478/fas-2021-0011 Search in Google Scholar

Kocańda, D., & Torzewski, J. (2009). Deterministic approach to predicting the fatigue crack growth in the 2024-T3 aluminum alloy under variable amplitude loading. Fatigue of Aircraft Structures, 2009(1), 102–115. https://doi.org/10.2478/v10164-010-0010-1 Kocańda D. Torzewski J. ( 2009 ). Deterministic approach to predicting the fatigue crack growth in the 2024-T3 aluminum alloy under variable amplitude loading . Fatigue of Aircraft Structures , 2009 ( 1 ), 102 115 . https://doi.org/10.2478/v10164-010-0010-1 Search in Google Scholar

Kudari, S. K., & Sharanaprabhu, C. M. (2017). The effect of anodizing process parameters on the fatigue life of 2024-t-351-aluminium alloy. Fatigue of Aircraft Structures, 2017(9), 109–115. https://doi.org/10.1515/fas-2017-0009 Kudari S. K. Sharanaprabhu C. M. ( 2017 ). The effect of anodizing process parameters on the fatigue life of 2024-t-351-aluminium alloy . Fatigue of Aircraft Structures , 2017 ( 9 ), 109 115 . https://doi.org/10.1515/fas-2017-0009 Search in Google Scholar

Low, E. T. (2021). FEM fatigue simulation for an offshore pipeline containing interacting cracks (Final Year Project (FYP)). Nanyang Technological University. https://hdl.handle.net/10356/148866 Low E. T. ( 2021 ). FEM fatigue simulation for an offshore pipeline containing interacting cracks (Final Year Project (FYP)). Nanyang Technological University . https://hdl.handle.net/10356/148866 Search in Google Scholar

Mechab, B., Malika, M., Salem, M., & Boualem, S. (2020). Probabilistic elastic-plastic fracture mechanics analysis of propagation of cracks in pipes under internal pressure. Frattura ed Integrità Strutturale, 14(54), 202–210. https://doi.org/10.3221/igf-esis.54.15 Mechab B. Malika M. Salem M. Boualem S. ( 2020 ). Probabilistic elastic-plastic fracture mechanics analysis of propagation of cracks in pipes under internal pressure . Frattura ed Integrità Strutturale , 14 ( 54 ), 202 210 . https://doi.org/10.3221/igf-esis.54.15 Search in Google Scholar

Mohitpour, M., Murray, A., McManus, M., & Colquhoun, I. (2010). Pipeline Integrity Assurance. ASME Press. https://doi.org/10.1115/1.859568 Mohitpour M. Murray A. McManus M. Colquhoun I. ( 2010 ). Pipeline Integrity Assurance . ASME Press . https://doi.org/10.1115/1.859568 Search in Google Scholar

Moussouni, A., Benachour, M., & Benachour, N. (2023). Prediction of fatigue cracks using gamma function. Fatigue of Aircraft Structures. https://doi.org/10.2478/fas-2022-0004 Moussouni A. Benachour M. Benachour N. ( 2023 ). Prediction of fatigue cracks using gamma function . Fatigue of Aircraft Structures . https://doi.org/10.2478/fas-2022-0004 Search in Google Scholar

Paris, P. C., & Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering, 85, 528–533. Paris P. C. Erdogan F. ( 1963 ). A critical analysis of crack propagation laws . Journal of Basic Engineering , 85 , 528 533 . Search in Google Scholar

Soares, E., Bruère, V. M., Afonso, S. M. B., Willmersdorf, R. B., Lyra, P. R. M., & Bouchonneau, N. (2019). Structural integrity analysis of pipelines with interacting corrosion defects by multiphysics modeling. Engineering Failure Analysis, 97, 91–102. https://doi.org/10.1016/j.engfailanal.2019.01.009 Soares E. Bruère V. M. Afonso S. M. B. Willmersdorf R. B. Lyra P. R. M. Bouchonneau N. ( 2019 ). Structural integrity analysis of pipelines with interacting corrosion defects by multiphysics modeling . Engineering Failure Analysis , 97 , 91 102 . https://doi.org/10.1016/j.engfailanal.2019.01.009 Search in Google Scholar

Sun, J., & Cheng, Y. F. (2019). Modelling of mechano-electrochemical interaction of multiple longitudinally aligned corrosion defects on oil/gas pipelines. Engineering Structures, 190, 9–19. https://doi.org/10.1016/j.engstruct.2019.04.010 Sun J. Cheng Y. F. ( 2019 ). Modelling of mechano-electrochemical interaction of multiple longitudinally aligned corrosion defects on oil/gas pipelines . Engineering Structures , 190 , 9 19 . https://doi.org/10.1016/j.engstruct.2019.04.010 Search in Google Scholar

Weertman, J. (1973). Theory of fatigue crack growth based on a BCS Crack theory with work hardening. International Journal of Fracture, 9, 125–131. https://doi.org/10.1007/BF00041854 Weertman J. ( 1973 ). Theory of fatigue crack growth based on a BCS Crack theory with work hardening . International Journal of Fracture , 9 , 125 131 . https://doi.org/10.1007/BF00041854 Search in Google Scholar

Witek, L. (2011). Experimental and numerical crack initiation analysis of the compressor blades working in resonance conditions. Fatigue of Aircraft Structures, 2011(3), 134–153. https://doi.org/10.2478/v10164-010-0045-3 Witek L. ( 2011 ). Experimental and numerical crack initiation analysis of the compressor blades working in resonance conditions . Fatigue of Aircraft Structures , 2011 ( 3 ), 134 153 . https://doi.org/10.2478/v10164-010-0045-3 Search in Google Scholar

Zarea, M., Piazza, M., Vignal, G., Jones, C., Rau, J., & Wang, R. (2013). Review of R&D in support of mechanical damage threat management in onshore transmission pipeline operations. Proceedings of the 2012 9th International Pipeline Conference. Volume 2: Pipeline Integrity Management. Calgary, Alberta, Canada. September 24–28, 2012. ASME, 569–582. Zarea M. Piazza M. Vignal G. Jones C. Rau J. Wang R. ( 2013 ). Review of R&D in support of mechanical damage threat management in onshore transmission pipeline operations . Proceedings of the 2012 9th International Pipeline Conference. Volume 2: Pipeline Integrity Management. Calgary, Alberta, Canada. September 24–28, 2012. ASME , 569 582 . Search in Google Scholar

Zhang, C., Sun, X., Li, Y., Zhang, X., Zhang, X., Yang, X., & Li, F. (2018). Hydraulic characteristics of transporting a piped carriage in a horizontal pipe based on the bidirectional fluid-structure interaction. Mathematical Problems in Engineering, 2018, 1–27. https://doi.org/10.1155/2018/8317843 Zhang C. Sun X. Li Y. Zhang X. Zhang X. Yang X. Li F. ( 2018 ). Hydraulic characteristics of transporting a piped carriage in a horizontal pipe based on the bidirectional fluid-structure interaction . Mathematical Problems in Engineering , 2018 , 1 27 . https://doi.org/10.1155/2018/8317843 Search in Google Scholar

Zhang, Y., Xiao, Z., & Luo, J. (2018). Fatigue crack growth investigation on offshore pipelines with three-dimensional interacting cracks. Geoscience Frontiers, 9(6), 1689–1697. https://doi.org/10.1016/j.gsf.2017.09.011 Zhang Y. Xiao Z. Luo J. ( 2018 ). Fatigue crack growth investigation on offshore pipelines with three-dimensional interacting cracks . Geoscience Frontiers , 9 ( 6 ), 1689 1697 . https://doi.org/10.1016/j.gsf.2017.09.011 Search in Google Scholar

eISSN:
2300-7591
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other