Functional Significance of Anatomical Accommodation in the Skull of Common Hoopoe, Upupa Epops (Bucerotiformes, Upupidae)

F. A.-R. Mahmoud 1  und A. G. Gadel-Rab 2
  • 1 Department of Zoology, Faculty of Science, Assuit University, Egypt
  • 2 Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt

Abstract

The present study aims to supplement anatomical data about the cranial skeleton and describe some cranial modifications of the common hoopoe, Upupa epops Linnaeus, 1758, by using several techniques. The common hoopoe has small skull and characterized by presence of air space (pneumatization) within their bones. The degree of pneumatization increased especially within the temporal region. The skull of the common hoopoe possesses different types of kinetic hinges; one hinge locates between frontal and nasal region (frontonasal hinge) allows depression/elevation of upper beak relative to brain case. The other one exhibits between the upper beak and jugal bar (maxilla-jugal hinge). The skull of the common hoopoe characterizes by presence of powerful jaw ligamentous system. One of these ligaments exhibits ossification (Lig. Jugomandibularis medialis). In addition, a long mandibular symphysis observes between the two rami of the anterior third of the lower beak. This mandibular symphysis seems longer in the dorsal surface than the ventral one form ventral gap between the two rami of mandible. These modifications of the cranial skeleton of common hoopoe and jaw ligaments consider features of adaptation for probe mechanism, as well as exhibit its phylogenetic relationship with other avian species.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • Agabalyan, N. A., Evans, D. J. R., Stanley, R. L. 2013. Investigating tendon mineralization in the avian hind limb: a model for tendon ageing, injury and disease. Journal of Anatomy,223, 262–277.

  • Apostolaki, N. E., Rayfield, E. J., Barrett, P. M. 2015. Osteological and soft tissue evidence for pneumatization in the cervical column of the ostrich (Struthio camelus) and observations on the vertebral columns of nonvolant, semi-volant and semi-auatic birds. PLoS ONE, 10 (12): e0143834.

  • Barreira, A. S., Lijtmaer, D. A., Tubaro, P. L. 2016. The multiple applications of DNA barcodes in avian evolutionary studies. Genome, 59 (11), 899–911.

  • Baumel, J. J., King, A. S., Breazile, J. E., Evans,. H. E., Vanden Berge, J. C. 1993. Handbook of avian anatomy: Nomina Anatomica Avium. Second edition. Cambridge, MA: Nuttall Ornithological Club, 1–779.

  • Benson, R. B. J., Butler, R. J., Carrano, M. T., O›Connor, P. M. 2012. Air-filled postcranial bones in theropod dinosaurs: physiological implications and the ‘reptile’– bird transition. Biol Rev, 87:168–193.

  • Campagna, L., Benites, P., Lougheed, S. C., Lijtmaer, D. A., Di Giacomo, A. S., Eaton, M. D., Tubaro, P. L. 2012. Rapid phenotypic evolution during incipient speciation in a continental avian radiation. Proc Biol Sci, 7, 279 (1734), 1847–1856.

  • Demmel Ferreira, M. M., Tambussi, C. P., Degrange, F. J., Pestoni, S., Tirao, G. A. 2019. The cranio-mandibular complex of the nightjar Systellura longirostris (Aves, Caprimulgiformes): functional relationship between osteology, myology and feeding. Zoology (Jena), 132, 6–16.

  • Dumont, R. E. 2010. Bone density and the light weight skeletons of birds. Proc Biol Sci.277 (1691), 2193-8. doi: 10.1098/rspb.2010.0117

  • El-Bakary, N. E. R. 2011. Surface Morphology of the tongue of the Hoopoe (Upupa epops). Journal of American Science, 7 (1), 394–399.

  • Gadel-Rab, A. G., Shawki, N. A., Saber, S. A. A. 2017. Morpho-Functional adaptations of the lingual epithelium of two bird species which have different feeding habits. The Eygptian journal of Hospital Medicine, 69 (3), 2115–2127.

  • Gill, F., Donsker, D. 2017. Todies, motmots, bee-eaters, hoopoes, wood hoopoes & hornbills. IOC World Bird List 7:1.

  • Fabbri, M., Mongiardino, K. N., Pritchard, A. C., Hanson, M., Hoffman, E., Bever, G. S. et al. 2017. The skull roof tracks the brain during the evolution and development of reptiles including birds. Nat Ecol Evol, 110, 1543–1550.

  • Harshman, J., Braun, E. L., Braun, M. J., Huddleston, C. J., Bowie, R. C. K. 2008. Phylogenomic evidence for multiple losses of flight in ratite birds. PNAS, 105, 13462–13467.

  • Kristin, A. 2001. Family Upupidae (Hoopoes). In: Josepdel, H., Andrew, E., Sargatal, J., eds. Handbook of the Birds of the World. Vol. 6, Mouse birds to Hornbills. Lynx Edicions, Barcelona, 396–411.

  • Lavinia, P. D., Barreira, A. S., Campagna, L., Tubaro, P. L., Lijtmaer, D. A. 2019. Contrasting evolutionary histories in Neotropical birds: divergence across an environmental barrier in South America. Mol Ecol, 28 (7), 1730–1747. doi: 10.1111/mec.15018.

  • Lijtmaer, D. A., Kerr, K. C., Stoeckle, M. Y., Tubaro, P. L. 2012. DNA barcoding birds: from field collection to data analysis. Methods Mol Biol, 858, 127–152.

  • Mahmoud, F. A., Shawki, N. A., Abdeen, A. M. 2017. Biomechanics Analysis of Jaw Musculature of the common Kestrel (Falco tinnunculus) and the Budgerigar (Melopsittacus undulates). Bio Bulletin, 3 (1), 39–55.

  • Mahmoud, F. A., Gadel-Rab, A. G., Shawki, N. A. 2018. Functional-morphological study of the choana in different bird species. The journal of basic and applied science, 79, 11.

  • Mayr, G. 2000. Tiny Hoopoe-Like Birds from the Middle Eocene of Messel (Germany). Auk, 117 (4), 964–970.

  • McKinney, R. G. 2004. Skull Pneumatization in passerines: a table of last dates many passerines in northeast can be aged safly by skulling. North American Bird Bander, 29 (4), 164–170.

  • Ni, Y., Wang, L., Liu, X., Zhang, H., Lin, C. Y., Fan, Y. 2017. Micro-mechanical properties of different sites on woodpecker’s skull. Comput Methods Biomech Biomed Engin, 20 (14), 1483–1493.

  • Petritsch, B., Goltz, J. P., Hahn, D., Wendel, F. 2011. Extensive craniocervical bone pneumatization. Diagn Interv Radiol, 17, 308–310.

  • Rawal, U. M. 1968. Anatomy of the feeding apparatus of hoopoe Upupa epop epops Linnaeus. Proceedings of the Indian Academy of Sciences, Section B, 68 (2), 79–90.

  • Roeder, R. K., Schwartz, A. G., Pasteris, J. D. 2012. Mineral distributions at the developing tendon enthesis. PLoS ONE, 7: e48630. doi: 10.1371.

  • Salaramoli, J., Sadeghi, F., Gilanpour, H., Azarnia, M., Aliesfehani, T. 2015. Modifie d double skeletal staining protocols with Alizarin red and Alcian blue in laboratory animals. J ajaums ac ir, 13, 76–81.

  • Serventy, D. L., Nicholls, C. A., Farner, D. S. 1967. Pneumatization of the cranium of the Zebra Finch Castanotis. International Journal of avian Science, https://doi.org/10.1111/j.1474-919X.1967.tb00026.x

  • Shawki, N. A. 1998. Kinetics of jaw apparatus of the Egyptian black Kite, Milvus migrans aegyptius. J. Union. Arab. Biol, Cairo, 9 (A), 214–255.

  • Witmer, L. M., Rose, K. D. 1991. Biomechanics of the jaw apparatus of the gigantic Eocene bird Diatryma: implications for diet and mode of life. Paleobiology, 17 (2), 95–120.

  • Zelenkov, N. V. 2017. Finds of fragmentary bird skeletons in the Middle Miocene of the northern Caucasus. Dokl Biol Sci, 477 (1), 223–226.

OPEN ACCESS

Zeitschrift + Hefte

Suche