Modelling the Bioclimatic Niche of a Cohort of Selected Mite Species (Acari, Acariformes) Associated with the Infestation of Stored Products

V. M. Tytar 1  and Ya. R. Oksentyuk 2
  • 1 Schmalhausen Institute of Zoology, NAS of Ukraine, , 01030, Kyiv, Ukraine
  • 2 Zhytomyr Ivan Franko State University, , 10008, Zhytomyr, Ukraine


In this study an attempt is made to highlight important variables shaping the current bioclimatic niche of a number of mite species associated with the infestation of stored products by employing a species distribution modeling (SDM) approach. Using the ENVIREM dataset of bioclimatic variables, performance of the most robust models was mostly influenced by: 1) indices based on potential evapotranspiration, which characterize ambient energy and are mostly correlated with temperature variables, moisture regimes, and 2) strong fluctuations in temperature reflecting the severity of climate and/or extreme weather events. Although the considered mite species occupy man-made ecosystems, they remain more or less affected by the surrounding bioclimatic environment and therefore could be subjected to contemporary climate change. In this respect investigations are needed to see how this will affect future management targets concerning the safety of food storages.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Akaike, H. 1975. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723. DOI: 10.1109/TAC.1974.1100705.

  • Akimov, I. A. 1985. The biological aspects of harmfulness of acaroid mites. Naukova Dumka, Kiev, 1–157 [In Russian].

  • Anderson, R. P., Lew, D., Peterson, A. T. 2003. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Journal of Ecological Modelling, 162, 211–232.

  • Armitage, D. M., Cook, D. A. 1999. Limiting moisture uptake at the grain surface to prevent mite infestation. Home-Grown Cereals Authority (HGCA) Report No. 201, 1–18. URL

  • Aspaly, G., Stejskal, V., Pekar, S., Hubert, J. 2007. Temperature-dependant population growth of three species of stored product mites (Acari: Acaridida). Experimental and Applied Acarology, 42, 37–46.

  • Baldwin, R. A. 2009. Use of maximum entropy modeling in wildlife research. Entropy, 11, 854–866.

  • Bartholomé, E., Belward, A. 2005. GLC2000: a new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26, 1959–1977.

  • Bradie, J., Leung, B. 2017. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. Journal of Biogeography, 44, 1344–1361.

  • Bucklin, D. N., Basille, M., Romanach, S., Brandt, L. A., Mazzotti, F. J., Watling, J. I. 2016. Considerations for building climate-based species distribution models. University of Florida IFAS Extension, 1–8. URL

  • Clarke, A. 2017. Principles of Thermal Ecology: Temperature, Energy, and Life. Oxford: Oxford University Press, 2017, 1–464. Oxford Scholarship Online, 2017, DOI: 10.1093/oso/9780199551668.001.0001.

  • Clemmons, E. A., Taylor, D. K. 2016. Booklice (Liposcelis spp.), Grain Mites (Acarus siro), and Flour Beetles (Tribolium spp.): ‘Other Pests’ Occasionally Found in Laboratory Animal Facilities. Journal of the American Association for Laboratory Animal Science, 55, 737–743.

  • Collins, D. A. 2012. A review on the factors affecting mite growth in stored grain commodities. Experimental and Applied Acarology, 56, 191–208.

  • Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., Böhner, J. 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8, 1991–2007. DOI: 10.5194/gmd-8-1991-2015.

  • Cotton, R. T. 1956. Pests of Stored Grain and Grain Products. Burgess Publishing Company, Minneapolis, Minnesota, 1956, 1–318.

  • Cunnington, A. M. 1965. Physical limits for complete development of the grain mite Acarus siro (Acarina, Acaridae), in relation to its world distribution. Journal of Applied Ecology, 2, 295–306.

  • Cunnington, A. M. 1969. Physical limits for complete development of the copra mite, Tyrophagus putrescentiae (Schrank) (Acarina: Acaridae). In: Evans, G. O., ed. Proceedings of 2nd international congress of acarology. Budapest, 241–248.

  • Cunnington, A. M. 1976. The effect of physical conditions on the development and increase of some important storage mites. Annals of Applied Biology, 82, 175–201.

  • Currie, D. J. 1991. Energy and large-scale patterns of animal and plant-species richness. The American Naturalist, 137, 27–49.

  • Dunn, J. A. 2003. The effect of fluctuating temperature and humidity, and aeration on population growth of Acarus siro (L.) near the surface of a grain bulk. In: Credland, P. F., Armitage, D. M., Bell, C. H., Cogan, P. M., Highley, E., eds. Proceedings of the 8th international working conference on stored product protection. CAB International, Wallingford UK, 173–178.

  • Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberon, J., Williams, S., Wisz, M., Zimmermann, N. E. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.

  • Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., Yates, C. J., 2011. A statistical explanation of Maxent for ecologists. Diversity and Distributions, 17, 43–57.

  • Federman, R., Carmel, Y., Kent, R. 2013. Irrigation as an important factor in species distribution models. Basic and Applied Ecology, 14, 651–658.

  • Fielding, A. H., Bell, J. F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49.

  • Fisher, J. B., Whittaker, R. J., Malhi, Y. 2011. ET come home: potential evapotranspiration in geographical ecology. Global Ecology and Biogeography, 20, 1–18.

  • Franklin, J. 2009. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press, Cambridge, 1–340.

  • Freeman, J. A. 1973. Infestation and control of pests of stored grain in international trade. In: Sinha, R. N., Muir, W. E. Grain Storage: Part of a System. Avi Publishing Company, Westport, Connecticut, 99–136.

  • Gormley, A. M., Forsyth, D. M., Griffioen, P., Lindeman, M., Ramsey, D., Scroggie, M. P., Woodford, L., 2011. Using presence-only and presence-absence data to estimate the current and potential distributions of established invasive species. Journal of Applied Ecology, 48, 25–34.

  • Graham, C. H., Hijmans, R. J., 2006. A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography, 15, 578–587.

  • Griffiths, D. A. 1964. Experimental studies on the systematics of the genus Acarus Linnaeus 1758. Acarologia, 6, 101–116.

  • Hanspach, J., Kühn, I., Pompe, S., Klotz, S. 2010. Predictive performance of plant species distribution models depends on species traits. Perspectives in Plant Ecology, Evolution and Systematics, 12, 219–225.

  • Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guegan, J. F., Kaufman, D. M., Kerr, J. T., Mittelbach, G. G., Oberdorff, T., O’Brien, E. M., Porter, E. E., Turner, J. R. G. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105–3117.

  • Hernandez, P.A., Franke, I., Herzog, S. K., Pacheco, V., Paniagua, L., Quintana, H. L., Soto, H. A., Swensen, J. J., Tovar, C., Valqui, T. H., Vargas, J., Young, B. E. 2008. Predicting species distributions in poorly-studied landscapes. Biodiversity and Conservation, 17, 1353–1366.

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

  • Holdridge, L. R. 1947. Determination of world plant formations from simple climatic data. Science, 105 (2727), 367–368.

  • Hubert, J., Pekar, S., Nesvorna, M., Sustr, V. 2010 Temperature preference and respiration of Acarid mites. Journal of Economic Entomology, 103, 2249–2257.

  • IPCC, 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K., Reisinger, A., eds.]. IPCC, Geneva, Switzerland, 1–104.

  • IPCC. 2018. Summary for Policymakers. In: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., Waterfield, T., eds. Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland, 1–32.

  • Jueterbock, A., Smolina, I., Coyer, J. A., Hoarau, G. 2016. The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach. Ecology and evolution, 6, 1712–1724. DOI:10.1002/ece3.2001.

  • Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J., Scott, J. K. 2012. CliMond: global high resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3, 53–64.

  • Kumar, S., Stohlgren, T. J. 2009 Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and The Natural Environment, 1, 94–98.

  • Kumar, S., Spaulding, S. A., Stohlgren, T. J., Hermann, K. A., Schmidt, T. S., Bahls, L. L. 2009. Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US. Frontiers in Ecology and the Environment, 7, 415–420.

  • Lang, J. D., Mulla, M. S. 1977 Distribution and abundance of house dust mites, Dermatophagoides spp., in different climatic zones of southern California. Environmental Entomology, 6, 213–216.

  • Ma, B., Sun, J. 2018. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecology, 18, 10. DOI: 10.1186/s12898-018-0165-0.

  • Makori, D., Fombong, A., Abdelrahman, E., Kiatoko., N, Ongus., J., Irungu, J., Mosomtai, G., Makau, S., Mutanga, O., Odindi, J., Raina, S., Landmann., T. 2017. Predicting Spatial Distribution of Key Honeybee Pests in Kenya Using Remotely Sensed and Bioclimatic Variables: Key Honeybee Pests Distribution Models. International Journal of Geo-Information, 6, 66. DOI: 10.3390/ijgi6030066.

  • McMahon, T. A. 2007. Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644.

  • Moses, J. A, Digvir, S. J., Alagusundaram, K. 2015. Climate Change and its Implications on Stored Food Grains. Agricultural Research, 4, 21–30.

  • Mumcuoglu, K. Y., Gat, Z., Horowitz, T., Miller, J., Bar-Tana, R., Ben-Zvi, A. Naparstek, Y. 1999. Abundance of house dust mites in relation to climate in contrasting agricultural settlements in Israel. Medical and Veterinary Entomology, 13, 252–258.

  • Nakazato, T., Warren, D. L., Moyle, L. C. 2010. Ecological and geographic modes of species divergence in wild tomatoes. American Journal of Botany, 97, 680–693.

  • Palyvos, N. E., Emmanouel, N. G., Saitanis, C. J. 2008. Mites associated with stored products in Greece. Experimental and Applied Acarology, 44, 213–226.

  • Phillips, S. J., Anderson, R. P., Schapire, R. E. 2006. Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190, 231-259.

  • Phillips, S. J., Dudik, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175.

  • Segurado, P., Aráujo, M. B., 2004. An evaluation of methods for modelling species distributions. Journal of Biogeography, 31, 1555–1568.

  • Sinha, R. N. 1964. Effect of low temperature on the survival of some storage mites. Acarologia, 6, 336–341.

  • Sinha, R. N. 1968. Seasonal changes in mite populations in rural granaries in Japan. Annals of the Entomological Society of America, 61, 938–949.

  • Sinha, R. N. 1973. Interrelations of physical, chemical and biological variables in the deterioration of stored grain. In: Sinha, R. N., Muir, W. E., eds. Grain storage: part of a system. The Avi Publishing Co., Westport, 15–47.

  • Sinha, R. N., Wallace, H. A. H. 1973. Population dynamics of stored-product mites. Oecologia, 12, 315–327.

  • Stratil, H. U., Knülle, W. 1985. Die Induktion des Hypopusstadiums bei der im Lagergetreide vorkommenden Milbe Glycyphagus destructor (Schrank, 1781) (Astigmata, Glycyphagidae). Zeitschrift für Angewandte Entomologie, 99, 350–365. DOI:10.1111/j.1439-0418.1985.tb01998.x.

  • Swets, J. 1988. Measuring the accuracy of diagnostic systems. Science, 240 (4857), 1285–1293. DOI: 10.1126/science.3287615.

  • Thompson, I., Mackey, B., McNulty, S., Mosseler, A. 2009. A Synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Forest Resilience, Biodiversity, and Climate Change. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series no. 43, 1-67.

  • Title, P. O., Bemmels, J. B. 2018. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography, 41, 291–307.

  • UNEP. 2010. Connecting the Dots: Biodiversity. Adaptation, Food Security and Livelihoods. Nairobi, 1–80. URL:

  • Varner, J., Dearing, M. D. 2014. The Importance of Biologically Relevant Microclimates in Habitat Suitability Assessments. PLoS One, 9 (8), e104648. URL:

  • Warren, D. L., Seifert, S. N. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21, 335–342.

  • Warren, D. L., Glor, R. E., Turelli, M. 2008. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62, 2868–2883.

  • White, N. D. G., Fields, P. G., Demianyk, C. J., Timlick, B., Jayas, D. S. 2011. Arthropods of Stored Cereals, Oilseeds, and Their Products in Canada: Artificial Ecosystems on Grasslands. In Arthropods of Canadian Grasslands (Vol. 2): Inhabitants of a Changing Landscape. Edited by K. D. Floate. Biological Survey of Canada, 267–289. DOI:10.3752/9780968932155.ch11.

  • Wiens, J. J. 2011. The niche, biogeography and species interactions. Philosophical Transactions of the Royal Society of London. Biological Sciences, 366, 2336–2350.

  • Wildlife Conservation Society — WCS, and Center for International Earth Science Information Network — CIESIN — Columbia University. 2005. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). URL:

  • Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A. S. 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763–773.

  • Yi, Y. J., Cheng, X., Yang, Z. F., Zhang, S. H. 2016. MaxEnt modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering, 92, 260–269.


Journal + Issues