Interspecific Interactions as a Factor of Limitation of Geographical Distribution: Evidence Obtained by Modeling Home Ranges of Vole Twin Species Microtus Arvalis – M. Levis (Rodentia, Microtidae)

S. V. Mezhzherin 1 , E. I. Lashkova 1 , I. I. Kozinenko 1 , A. V. Rashevskaya 1  and V. M. Tytar 1
  • 1 Shmalhausen Institute of Zoology. NAS of Ukraine, vul. B. Khmelnitskogo, 15, , Kyiv, Ukraine


Based on the maximum entropy modeling algorithm and using 12 environmental variables, we modeled the distribution of the vole twin species Microtus arvalis and M. levis, with particular attention to regions where the species overlap. For both species models performances were considered “excellent” (AUC > 0.9), although some occurrences appeared in areas of low habitat suitability, whereas in some areas of predicted high habitat suitability there were no occurrences. Apparently, both species do not fully occupy areas predicted to be favorable in terms of habitat suitability and persistence. Th e cause for such restriction are not the considered factors (including bioclimatic), but competitive interactions that prevent individuals of one species from expanding within the home range of the other. Contributions of the considered environmental variables for generating the potential distribution prediction were distinguished: for M. arvalis net primary production alone made the largest contribution (42 %), whereas for M. levis there was a cumulative effect of a number of factors.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Conrad, O., Bechtel, B., Bock, M. et al. 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development Discussions, 8 (2), 2271-2312.

  • Barton, N. H., Hewitt, G. M. 1985. Analysis of hybrid zones. Ann. Rev. Ecol. Syst., 16, 113-148.

  • Barton, N. H., Hewitt, G. M. 1989. Adaptation, speciation and hybrid zones. Nature, 341, 497-503.

  • Elith, J., Graham, C. H., Anderson, R. P. et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29 (2), 129-151.

  • Franklin, J. 2009. Mapping species distribution: spatial inference and prediction. Cambridge University Press, Cambridge, 1-340.

  • Helbig, J. 2005. A ring of species. Heredity 95 (1), 113-114.

  • IIASA/FAO, 2012. Global Agro-ecological Zones (GAEZ v3.0). IIASA, Laxenburg, Austria and FAO, Rome, Italy,

  • Jiggins, C. D., Mallet, J. 2000. Bimodal hybrid zones and speciation. Trends Ecol. Evol., 15 (6), 250-255.

  • Malygin, V. M. 1983. Systematics of the common voles. Moscow, Nauka. 1-208.

  • Miller, J. 2010. Species Distribution Modeling. Geography Compass, 4 (6), 490-509.

  • Peterson, A. T. 2006. Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics, 3, 59-72.

  • Phillips, S. J., Anderson, R. P., Schapire, R. E. 2006. Maximum entropy modeling of species geographic distributions. J. Ecol. Model., 190 (3-4), 231-256.

  • Phillips, S. J., Dudik, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31 (2), 161-175.

  • Swets, J. A. 1988. Measuring the accuracy of diagnostic systems. Science, 240 (4857), 1285-1293.

  • Zagorodnyuk, I. V., Teslenko, S. V. 1986. Sibling species of Microtus arvalis superspecies in Ukraine. Com I. Distribution of Microtus subarvalis. Vestnik Zoologii, 3, 34-40 [In Russian].

  • Teslenko, S. V., Zagorodnyuk, I. V. 1986. Sibling species of Microtus arvalis superspecies in Ukraine. Com II. Distribution of Microtus arvalis. Vestnik Zoologii, 6, 27-31 [In Russian].

  • Zagorodnyuk, I. V., Mikhailenko, A. G., Teslenko, S. V. 1994. Voles of the genus Microtus in Moldova. Rodents synantropy, Моskow, IEMEA, 88-91.

  • Zima, J., Zagorodnyuk, I. V., Gaychenko, V. A., Zhezherina, T. O. 1991. Polymorphism and chromosome variation of Microtus rossiaemeridionalis (Rodentiformes). Vestnik Zoologii, 25 (4), 48-53 [In Russian].


Journal + Issues