A Simple Dual Stain for Detailed Investigations of Plant-Fungal Pathogen Interactions

Open access


Dramatic increase in confocal microscopy observation output has been gained by optimization of a simple trypan blue and aniline blue dual-stain and its application to two model pathosystems: Pseudoperonospora cubensiscucumber and Phytophthora infestans-tomato. Comparison of two dual-stain methods for confocal microscopy studies of P. cubensis-challenged cucumber leaves indicated the 'mild' approach most successful. This methodology provides simultaneous detection of different pathogen structures layered with the plant defense reactions. Moreover, ImageJ-assisted quantification of plant defense responses renders this method useful for addressing the host plant resistance reactions, as well as investigating the given isolate's pathogenicity. Application of this method for the P. infestans-challenged tomato leaf samples resulted in detection of several fungal infection structures, along with plant defense responses. The dual-stain also enabled detection of a peculiar aniline blue-sensitive material in the pathogen cell walls at the area of its hyphae emerging through the leaf stomata. Results presented herein indicate this method is applicable for detailed (possibly quantitative) investigations of multiple plant-fungal pathosystems.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adhikari B.N. Savory E.A. Vaillancourt B. Childs K.L. Hamilton J.P. Day B. Buell R.C. 2012. Expression profiling of Cucumis sativus in response to infection by Pseudoperonosporacubensis. PLoS ONE 7(4): e34954. [DOI:10.1371/journal.pone.0034954]

  • An Y. Kang S.C. Kim K.D. Hwang B.K. Jeun Y. 2010. Enhanced defense responses of tomato plants against late blight pathogen Phytophthora infestans by preinoculation with rhizobacteria. Crop Protection 29: 1406-1412. [DOI:10.1016/j.bbr.2011.03.031]

  • Bhadauria V. Miraz P. Kennedy R. Banniza S. Wei Y. 2010. Dual trypan-aniline blue fluorescence staining methods for studying fungus-plant interactions. Biotechnic & Histochemistry 85: 99-105. [DOI: 10.3109/10520290903132196]

  • Call A.D. Criswell A.D. Wehner T.C. Kłosińska U. Kozik E.U. 2012. Screening cucumber (Cucumissativus L.) for resistance to downy mildew caused by Pseudoperonosporacubensis (Berk. & Curt.). Crop Science 52: 577-592. [DOI:10.2135/cropsci2011.06.0296]

  • Chen Y. Halterman D.A. 2011. Phenotypic characterization of potato late blight resistance mediated by the broad-spectrum resistance gene RB. Phytopathology 101: 263-270. [DOI: 10.1094/ PHYTO-04-10-0119]

  • Currier H.B. 1957. Callose substance in plant cells. American Journal of Botany 44: 478-488. [DOI:10.2307/2438916]

  • Diez-Navajas A.M. Greif C. Poutaraud A. Merdinoglu D. 2007. Two simplified fluorescent staining techniques to observe infection structures of the oomycete Plasmopara viticola in grapevine leaf tissues. Micron 38: 680-683. [DOI: 10.1016/j.micron.2006.09.009]

  • Foolad M.R. 2007. Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics 2007:64358. [DOI:10.1155/2007/64358]

  • Freytag S. Arabatzis N. Hahlbrock K. Schmelzer E. 1994. Reversible cytoplasmic rearrangements precede wall apposition hypersensitive cell death and defense-related gene activation in potato Phytophthorainfestans interactions. Planta 194: 123-135. [DOI:10.1007/bf00201043]

  • Ganeshan S. Sharma P. Chibbar R.N.2009. Functional genomics for crop improvement. In: Molecular Techniques in Crop Improvement. (eds. Mohan J.S. & Brar D.S.) Springer New York: 63-95. [DOI:10.1007/978-90-481-2967-6_3]

  • Grandillo S. Chetelat R. Knapp S. Spooner D. Peralta I. Cammareri M. et al. 2011. Solanum sect. Lycopersicon. In: Wild crop relatives: Genomic and breeding resources. Vegetables. (ed.: Kole C.). Springer-Verlag Berlin Heidelberg: 129-215. [DOI: 10.1007/978-3-642- 20450-0_9]

  • Haas B.J. Kamoun S. Zody M.C. Jiang R.H.Y. Handsaker R.E. Cano L.M. et al. 2009. Genome sequence and analysis of the Irish potato famine pathogen Phytophthorainfestans. Nature 461: 393-398. [DOI: 10.1038/nature08358]

  • Hardham A.R. Shan W. 2009. Cellular and molecular biology of Phytophthora plant interactions. In: The Mycota. (ed. Deising H.B.). Springer Verlag Berlin Heidelberg. 5: 4-27. [DOI: 10.1007/978-3-540- 87407-2_1]

  • Hood M.E. Shew H.D. 1996. Applications of KOH-aniline blue fluorescence in the study of plantfungal interactions. Phytopathology 86: 704-708. [DOI: 10.1094/Phyto- 86-704]

  • Huang S. Li R. Zhang Z. Li L. Gu X. Fan W. et al. 2009. The genome of the cucumber Cucumis sativus L. Nature Genetics 41: 1275-1281. [DOI: 10.1038/ng.475]

  • Latgé J.-P. 2007. The cell wall: a carbohydrate armour for the fungal cell. Molecular Microbiology 66: 279-290.

  • Lebeda A. Cohen Y. 2011. Cucurbit downy mildew (Pseudoperonosporacubensis) biology ecology epidemiology host-pathogen interaction and control. European Journal of Plant Pathology 129: 157-192. [DOI: 10.1111/j.1365-2958.2007.05872.x]

  • Mueller L.A. Lankhorst R.K. Tanksley S.D. Giovannoni J.J. White R. Vrebalov J. et al. 2009. A snapshot of the emerging tomato genome sequence. Plant Genetics. 2: 78-92. [DOI: 10.3835/plantgenome2008.08.0005]

  • Nowicki M. Foolad M.R. Nowakowska M. Kozik E.U. 2012a. Potato and tomato late blight caused by Phytophthora infestans: An overview of pathology and resistance breeding. Plant Disease 96: 4-17. [DOI: 10.1094/PDIS-05-11-0458]

  • Nowicki M. Kozik E.U. Foolad M.R. 2012b. Late blight of tomato. In: Genomics applications in plant breeding (eds. Varshney R.K. & Tuberosa R.). Wiley-Blacwell Publishers USA: accepted.

  • Raffaele S. Win J. Cano L.M. Kamoun S. 2010. Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics 11: Article No.: 637. [DOI: 10.1186/1471-2164-11-637]

  • Savory E.A. Granke L.L. Quesada- Ocampo L.M. Varbanova M. Hausbeck M.K. Day B. 2010. The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Molecular Plant Pathology 12: 217-226. [DOI: 10.1111/j.1364-3703.2010.00670.x]

  • Savory E.A. Adhikari B.N. Hamilton J.P. Vaillancourt B. Day B. 2012a. mRNA-Seq analysis of the Pseudoperonospora cubensis transcriptome during cucumber (Cucumis sativus L.) infection. PLoS ONE 7(4): e35796. [DOI:10.1371/journal.pone.0035796]

  • Savory E.A. Zou C. Adhikari B.N. Hamilton J.P. Buell R.C. Shiu S.- H. Day B. 2012b. Alternative splicing of a multi-drug transporter from Pseudoperonospora cubensis generates an RXLR effector protein that elicits a rapid cell death. PLoS ONE 7(4): e34701. [DOI:10.1371/ journal. pone.0034701]

  • Shibata Y. Kawakita K. Takemoto D. 2010. Age-related resistance of Nicotiana benthamiana against hemibiotrophic pathogen Phytophthorainfestans requires both ethylene- and salicylic acid-mediated signaling pathways. Molecular Plant - Microbe Interactions 23: 1130-1142. [DOI: 10.1094/MPMI-23-9- 1130]

  • The Potato Genome Sequencing Consortium. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189-195. [DOI: 10.1038/nature10158]

  • Tian M. Win J. Savory E. Burkhardt A. Held M. Brandizzi F. Day B. 2011. 454 Genome Sequencing of Pseudoperonospora cubensis reveals effector proteins with a QXLR translocation motif. Molecular Plant- Microbe Interactions 24: 543-553. [DOI: 10.1094/MPMI-08-10-0185]

  • Vleeshouwers V. Raffaele S. Vossen J. Champouret N. Oliva R. Segretin M.E. Rietman H. Cano L.M. Lokossou A. Kessel G. 2011. Understanding and exploiting late blight resistance in the age of effectors. Annual Review of Phytopathology. [DOI: 10.1146/ annurev-phyto-072910-095326]

  • Wang Y.H. Joobeur T. Dean R.A. Staub J.E. 2007. Cucurbits. In: Genome mapping and molecular breeding in plants Volume 5: Vegetables. (ed. C. Kole) Springer Verlag Berlin- Heidelberg: 315-329. [DOI:10.1007/ 978-3-540-34536-7_10]

  • Woycicki R. Witkowicz J. Gawronski P. Dabrowska J. Lomsadze A. Pawelkowicz M. et al. 2011. The genome sequence of the North- European cucumber (Cucumissativus L.) Unravels Evolutionary Adaptation Mechanisms in Plants. PLoS ONE 6:e22728. [DOI: 10.1371/journal.pone.0022728]

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1549 617 42
PDF Downloads 733 336 45