The Alleviation Effect of Silicon on Seed Germination and Seedling Growth of Tomato Under Salinity Stress

Maryam Haghighi 1 , Zahra Afifipour 2 , and Maryam Mozafarian 2
  • 1 Horticulture Department, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
  • 2 Horticulture Department, College of Agriculture, Shiraz University, Shiraz, Iran

The Alleviation Effect of Silicon on Seed Germination and Seedling Growth of Tomato Under Salinity Stress

This study was conducted to evaluate the effectiveness of silicon (Si) application under salinity levels on seed germination and growth characteristics of tomato seeds. A laboratory experiment was performed on completely randomized design with two levels of salinity (25 and 50 mM NaCl) and 2 concentration of Si (1 and 2 mM) with 4 replications. Germination percentage, germination rate, seedling shoot and root length, fresh and dry weight of seedling and mean germination time was measured. Seed germination of Lycopersicon esculentum L. was significantly affected by salinity levels, Si and their interaction. Germination characteristics of tomato seeds decreased drastically by increasing NaCl concentrations. However, 1 mM Si had positive effects on seed germination characteristics and improved germination percentage, germination rate and mean germination time. Si alleviated the harmful effect of salinity stress on tomato seed germination at almost all germination characteristics.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adatia M. H., Besford R. T. 1986.The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann. Bot. 58: 343-351.

  • Barcelo J., Guevara P., Poschenrieder Ch. 1993. Silicon amelioration of aluminum toxicity in teosinte (Zea mays L. ssp. Mexicana). Plant Soil. 154: 249-255.

  • Cao Y. 2010. Effects of NaCl stress on seed germination of Lepidium latifolium. Modern Agricu. Sci. Technol.

  • Cuartero J., Fernandez-Munoz R. 1999. Tomato and salinity. Sci. Hort. 78: 83-125.

  • Dayou C. 1996. Germination of sugarbeet seed under stress of sodium chloride. Chinese J. Diabetes.

  • Epstein E. 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 641-664.

  • Etemadi N., Haghighi M., Nikbakht A., Zamani N. 2010. Methods to promote germination of Kelussia odoratissima Mozaff., an Iranian endemic medicinal plant. Herba Polinica 72: 49-61.

  • Gapińska M., Skłodowska M., Gabara B. 2008. Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid proxidation in tomato root. Acta Physiol. Plant. 30:11-18.

  • Gol D. 2009. Physiological and genetic characterization of salt tolerance in tomato (Lycopersicon esculentum). M. Sc. Thesis. The graduate school of engineering and science of Izmir Institute of Technology. Izmir. Turkey.

  • Hammond K. E., Evans D. E., Hodson M. J. 1995. Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant Soil. 173: 89-95.

  • Horst W. J., Marschner H. 1978. Effects of silicon on manganese tolerance in cowpea (Vigna unguiculata). Plant Soil 50: 287-303.

  • Iwasaki K., Meier P., Fecht M., Horst W. J. 2002. Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil 238: 281-288.

  • Jamil A., Naim S., Ahmed S., Ashraf M. 2005. Production of Industrially important enzymes using molecular approaches; cellulases and xylanases. In: Genetic resources and Biotechnology II, Volume 2, (D. Thangadurai, T. Pullaiah, Pedro A. Balatti. Eds.): Regency publications, New Delhi.

  • Jing-jun L., Qiang L., Li-an D. 2002. Eddect of salt stress on seed germination of Lolium perenne L. and Festuca elatakeng. Bulletin Botan. Research. 22: 328-332.

  • Lee S. K., Sohn E. Y., Hamayun M., Yoon L. Y., Lee I. J. 2010. Effects of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforest Syst. 80: 333-430.

  • Li Q., Ma C., Li H., Xiao Y., Liu X. 2004. Effects of soil available silicon on growth, development and physiological function of soy bean. National Institutes of Health, 15: 73-76.

  • Liu C., Li F., Luo C., Liu X., Wang S., Liu T., Li X. 2009. Foliar application of two silica sols reduced cadmium accumulation in race grains. J. Hazard. Mater. 161: 1466-1472.

  • Menzies J. G., Ehret D. L., Glass A. D. M., Helmer T., Koch C., Seywerd F. 1991. The effects of soluble silicon on the parasitic fitness of Sphaerotheca fuliginia on Cucumis sativus. Phytopathology 81: 84-88.

  • Savvas D., Passam H. C. 2002. Nutrient solution recycling In Hydroponic Production of Vegetables and Ornamentals. Embry Publications, Athens, Greece: 299-343.

  • Simon E. W. 1984. Early events in germination. Seed Physiol. 2:77-115.

  • Stamatakis A., Papadantonakis N., Lydakis-Simantiis N., Kefalas P. 2003. Effects of silicon and salinity on fruit yield and quality of tomato grown hydroponically. Acta Hort. 609: 141-148.

  • Sun Y., Luo W., Zhang W., Ziumei X. 2010. Effects of exogenous silicon on germination characteristics of cucumber seeds under NaHCO3 stress. International Conference on Challenges in Environmental Science and Computer Engineering. 1: 471-474.

  • Wang X. D., Ou-yang C., Fan Z., Gao S., Chen F., Tang L. 2010. Effects of exogenous silicon on seed germination and antioxidant enzyme activi-ties of Momordica charantia under salt stress. J. Animal & Plant Sci. 6: 700-708.

  • Wang X., Wei Z., Liu D., Zhao G. 2011. Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. African J. Biotech. 10: 545-549.

  • Xiao-fang S., Qing-song Z., You-liang L. 2000. Salinity injury to germination and growth of cotton (Gossypium hirsutum L.) at emergence and seedling stages. J. Plant Res. Environ. 9: 22-25.

  • Yong Y., Nora Fung-Yee T., Chang-Yi L., Yuk-Shan W. 2005. Effects of salinity on germination, seedling growth and physiology of three saltsecreting mangrove species. Aquat. Bot. 83: 193-205.

  • Zuccarini P. 2008. Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biol. Plantarum 52:157-160.


Journal + Issues