Self-Compatibility Inheritance in Tomatillo (Physalis Ixocarpa Brot.)

Open access

Self-Compatibility Inheritance in Tomatillo (Physalis Ixocarpa Brot.)

One of the main limiting factors to improve tomatillo is the presence of self-incompatibility which has been reported to be gametophytic. In an early research, a self-compatible plant was found in the Rendidora landrace and this allowed us to investigate the inheritance of self-compatibility gene (s) in tomatillo. The following crosses were performed: self-compatible x self-incompatible, self-compatible x self-compatible and self-incompatible x self-incompatible and their respective reciprocal crosses. Segregation ratios on self-compatibility versus self-incompatibility in their offspring indicate that self-compatibility is not inherited via cytoplasm, so the responsible gene is located in chromosomes. The inheritance of self-compatibility is due to a single dominant gene (Sc) which is a mutation at the S locus. Self-compatible individuals are strictly heterozygous (Sc,4) and finally, the self-compatibility allele (Sc), in the male side (Sc,4), seems to be non functional when self-pollinating the Sc,4 stigma. A single gene controlling stem pubescence was also found.

Bateman A.J. 1952. Self-incompatibility systems in the angiosperms. I. Theory. Heredity. 6: 285-310.

Bateman A.J. 1954. Self-incompatibility systems in the angiosperms. II. Iberis amara.Heredity. 8: 305-332.

Cipar M.S., Peloquin S.J., Hougas R.W. 1964. Variability in the expression of self-incompatibility in tuber-bearing diploid Solanum species.Am. Potato J. 41:155-162.

Tsukamoto T., Ando T., Kokubun H., Watanabe H., Masada M., Zhu X., Marchesi E., Kao T. 1999. Breakdown of self-incompatibility in a natural population of Petunia axilaris (Solanaceae) in Uruguay containing both self-incompatible and self-compatible plants. Sex Plant Reprod. 12: 6-13.

Williams W. 1965. Genetical principles and plant breeding. Blackwell Scientific Publications. Oxford, England. 527 pp.

Wünsch A., Hormaza J.I. 2004. Genetic and molecular analysis in Cristobalina sweet cherry, a spontaneous self-compatible mutant. Sex Plant Reprod. 17: 203-210.

Zuberi M.I, Zuberi S., Lewis D. 1981. The genetics of incompatibility in Brassica. I. Inheritance of self-compatibility in Brassica campestris L. var. Toria. Heredity. 46:175-190.

Cook L.M., Soltis P.S. 2000. Mating systems of diploid and allotetraploid populations of Tragopogon (Asteraceae). II. Artificial populations. Heredity. 84: 410-415.

De Nettancourt D. 1977. Incompatibility in angiosperms. Springer Verlag, Berlin.

East E.M. 1940. The distribution of self-sterility in flowering plants. Proc. Amer. Phil. Soc. 82, 449.

East E.M., Mangelsdorf P. 1925. A new interpretation of the hereditary behaviour of self-sterile plants. Proc. Nat. Acad. Sci. U.S. 24, 56.

Gerstel D.U. 1950. Self-incompatibility studies in Guayule II. Inheritance. Genetics. 45, 482.

Hosaka K., Hanneman R.E. 1998. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 1. Detection of an S locus inhibitor (Sli) gene. Euphytica. 99: 191-197.

Hughes M.B., Babcock E.B. 1950. Self-incompatibility in Crepis foetida. Genetics. 35, 570.

Husband B.C., Schemske D.W. 1997. The effect of inbreeding in diploid and tetraploid populations of Epibolium angustifolium (Onagraceae): implications for the genetic basis of inbreeding depression. Evolution. 51: 737-746.

Iezzoni A., Smith H., Albertini A. 1990. Cherries. pp. 109-174. In: Genetic Resources of Temperate Fruit and Nut Crops 1. (J.N. Moore & J.R. Bollington eds.). Int. Soc. Hort. Sci., Wageningen, The Netherlands.

Kakizaki Y. 1930. Self- and cross-incompatibilty in the common cabbage. Jpn. J. Bot. 5:133-208.

Keep E. 1985. Heterozygosity for self-incompatibility in Lloyd George red raspberry. Fuit Var. J. 39(4): 5-7.

Kondo K., Yamamoto M., Itahashi R., Sato, T. 2002. Insights into evolution of self-compatibility in Lycopersicon from a study of stylar factors. Plant Journal. 30: 143-152.

Kowyama Y., Kunz C., Lewis I., Newbigin E., Clarke A.E., Anderson M.A. 1994. Self-compatibility in a Lycopersicon peruvianum variant (LA2157) is associated with lack of style S-RNase activity. Theor. Appl. Genet. 88: 859-864.

Onus A.N., Pickersgill B. 2004. Unilateral incompatibility in Capsicum (Solanaceae): occurrence and taxonomic distribution. Ann. Bot. 94: 289-295.

Pandey K.K. 1957. Genetics of self-incompatibility in Physalis ixocarpa Brot.- A new system. Amer. J. Botany. 44:879-887.

Pandey K.K. 1960. Self-incompatibility system in two Mexican species of Solanum.Nature. Lond., 185, 483.

Richards A.J. 1986. Plant breeding systems. Allen and Unwin, London.

Soost R.K. 1969. The incompatibility gene system in citrus. pp: 189,190. In: Proc. of the First Intl. Citrus Symp. 1, (H.D. Chapman ed.).University of California, Riverside, CA.

Stone J.L. 2002. Molecular mechanisms underlying the breakdown of gametophytic self-incompatibility. Quart. Rev. Biol. 77(1): 17-32.

Takayama S., Isogai A. 2005. Self-icompatibility in plants. Annu. Rev. Plant Biol. 56: 467-489.

Lundqvist A. 1964. The nature of the two loci incompatibility system in grasses. IV. Interaction between the loci in relation to self-compatibility in Festuca pratensis Huds. Hereditas. 52: 221-234.

Mable B.K. 2004. Polyploidy and self-compatibility: is there an association? New Phytol. 162: 803-811.

Menzel M.Y. 1951. The cytotaxonomy and genetics of Physalis. Proc Amer. Phil. Soc. 95:132-183.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 207 207 36
PDF Downloads 70 70 16