Influence Of The Gripping Fixture On The Modified Compact Tension Test Results: Evaluation Of The Experiments On Cylindrical Concrete Specimens

Open access


The modified compact tension test (MCT) might become in the future a stable test configuration for the evaluation of fracture-mechanics parameters or also for description of fatigue behavior of composites materials such as concrete. Core drilling is used for sampling of existing structures. These samples have cylindrical shape with the selected thickness to avoid the stress concentration. This contribution focuses on the evaluation of the fracture behavior during static and quasi static tests. Static tests are performed on standard specimen with diameter 150 mm and length 300 mm. The quasi-static tests are performed using two different gripping fixtures. The results for quasi-static tests are represented as L-COD diagrams (i.e. load vs. crack opening displacement) measured on the loading axis. The comparison of results and discussion of advantages and disadvantages are introduced.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] ASTM International Standard E399. Standard test method for linear-elastic method of plane-strain fracture toughness KIC of metallic materials 2006 33 pp.

  • [2] CERVENKA V CERVENKA J PUKL R. ATENA – A tool for engineering analysis of fracture in concrete. Sadhana Vol. 27 Part 4. 2002 pp. 485–492.

  • [3] CIFUENTES H. LOZANO M. HOLUŠOVÁ T. MEDINA F. SEITL S. FERNÁNDEZ-CANTELI A. Applicability of a Modified Compact Tension Specimen for Measuring the Fracture Energy of Concrete. Anales de Mechanica de la Fractura Vol. 32. 2015 pp. 208–213 ISSN: 0213-3725.

  • [4] HASSAN M. M. Relationship between creep time dependent index and Paris Law parameters for bituminous mixtures. Journal of the South African Institution of Civil Engineering Vol. 55 No. 2. 2013 pp. 8–11 ISSN: 1021-2019.

  • [5] HOLUŠOVÁ T. SEITL S. CIFUENTES H. FERNÁNDEZ-CANTELI A. A numerical study of two different specimen fixtures for the modified compact tension test – their influence on concrete fracture parameters. Fracture and Structural Integrity Vol. 35. 2016 pp. 448–455 (in press).

  • [6] HOLUŠOVÁ T. SEITL S. FERNÁNDEZ-CANTELI A. Numerical Simulation of Modified Compact Tension Test depicting of Experimental Measurement by ARAMIS. Key Engineering Materials V. 627. 2014 pp. 277–280 ISSN (web): 1662-9795. doi: 10.4028/

  • [7] KARIHALOO B. L. Fracture mechanics and structural concrete. New York: Longman Scientific & Technical. 1995 330 pp. ISBN: 978-05-822-1582-5.

  • [8] KORTE S BOEL V DE CORTE W DE SCHUTTER G. Static and fatigue fracture mechanics properties of self-compacting concrte using three-point bending tests and wedge-splitting tests. Construction and Building Materials Vol 57. 2014; pp. 1–8 ISSN: 0950-0618 doi:10.1016/j.conbuildmat.2014.01.090.

  • [9] MERTA I TSCHEGG E. K. Fracture energy of natural fibre reinforced concrete. Construction and Building Materials Vol. 40. 2013; pp. 991–997 ISSN: 0950-0618 doi:10.1016/j.conbuildmat.2012.11.060.

  • [10] OŽBOLT J. BOŠNJAK J. SOLA E. Dynamic fracture of concrete compact tension specimen: Experimental and numerical study. Journal of Solids and Structures Vol. 50. 2013 pp. 4270–4278 ISSN: 0020-7683 doi: 10.1016/j.ijsolstr.2013.08.030.

  • [11] RILEM Report 39. Experimental Determination of the Stress-Crack Opening Curve for Concrete in Tension. Technical Committee TC 187. 2007 ISBN: 978-2-35158-049-3.

  • [12] RILEM Report 5 Fracture Mechanics Test Methods for Concrete S. P. Shah A. Carpinteri (Eds.) Hall London 1991.

  • [13] RILEM TC-50 FMC Recommendation. Determination of the fracture energy of mortar and concrete by means of three-point bend test on notched beams. Materials & Structures Vol. 18 Issue 4. 1985 pp. 287–290 ISSN (web): 1871-6873.

  • [14] SEITL S. VISZLAY V. CIFUENTES H. CANTELI A. Stress analysis of modified compact tension specimens: K-calibration curves. Transactions of the VŠB – Technical University of Ostrava Civil Engineering Series Vol. 15 No. 2. 2015 (in press).

  • [15] TSCHEGG E. K. Equipment and appropriate specimen shapes for tests to measure fracture values. Austrian Patent Nr. 390328 1986 Austrian Patent Office.

  • [16] VESELÝ V. HOLUŠOVÁ T. SEITL S. Numerical prediction of parasitic energy dissipation in wedge splitting tests on concrete specimens. 18th International Conference Engineering Mechanics 2012 Czech Republic pp. 1497–1504 ISBN: 978-80-86246-39-0.

  • [17] VISZLAY V. HOLUŠOVÁ T. Numerická analýza vplyvu modifikácie skúšky excentrickým ťahom na hodnoty súčiniteľov biaxiality. 16th International Conference of PhD Students. 2014 Faculty of Civil Engineering BUT CR pp. 6 CD ISBN 978-80-214-4851-3.

  • [18] VISZLAY V. Numerická podpora pro analýzu únavového chování cementových kompozitů. 2014 Bachelors thesis Brno University of technology Faculty of Civil Engineering Institute of Structural Mechanics pp. 44.

  • [19] WAGONER M. P. BUTTLAR W. G. PULINO G. H. Disk-shaped Compact Tension Test for Asphalt Concrete Fracture. Experimental mechanics Vol. 45 No. 3. 2005. pp. 270–277. ISSN: 0014-4851 doi: 10.1177/0014485105053205.

  • [20] XU S. REINHARDT H. W. Determination of double-K criterion for crack propagation in quasi-brittle fracture Part I: experimental investigation of crack propagation. International Journal of Fracture Vol. 98 Issue 2. 1999. pp. 111–149. ISSN (web): 1573-2673 doi: 10.1023/A:1018668929989.

  • Prof. Jacek Domski Ph.D. Department of Concrete Structures and Technology of Concrete Faculty of Civil Engineering Environmental and Geodetic Sciences Koszalin University of Technology Poland.

  • Ing. Bc. Oldřich Sucharda Ph.D. Department of Structural Mechanics Faculty of Civil Engineering VŠB – Technical University of Ostrava Czech Republic.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 200 110 6
PDF Downloads 109 65 0