Motorway Network Simulation Using Bluetooth Data

Open access


This paper describes a systematic calibration process of a Vissim model, based on data derived from BT detectors. It also provides instructions how to calibrate and validate a highway network model based upon a case study and establishes an example for practitioners that are interested in designing highway networks with micro simulation tools. Within this case study, a 94,5 % proper calibration to all segments was achieved First, an overview of the systematic calibration approach that will be followed is presented. A description of the given datasets follows. Finally, model’s systematic calibration and validation based on BT data from segments under free flow conditions is thoroughly explained. The delivered calibrated Vissim model acts as a test bed, which in combination with other analysis tools can be used for potential future exploitation regarding transportation related purposes.

1. Chu, L., Liu, X. H., Oh, J-S. and Recker, W. (2004) A Calibration Procedure for Microscopic Traffic Simulation. 2004 TRB Annual Meeting, November 18.-20., 2004.

2. Dowling, R., Skabardonis, A., Halkias, J., McHale, G. and Zammit, G. (2004) Guidelines for Calibration of Microsimulation Models: Framework and Applications, Transportation Research Record: Journal of the Transportation Research Board, Vol. 1876, TRB, National Research Council, Washington D.C., 2004, pp. 1-9.

3. Federal Highway Research Institute. (2011) Manual Traffic Census, available at:

4. Forschungsgesellschaft fuer Strassen- und Verkehrswesen Arbeitsgruppe Verkehrsfuehrung und Verkehrssicherheit. (2006) Hinweise zur mikroskopischen Verkehrsflusssimulation.

5. Gomes, G., May, A. and Horowitz, R. (2004) Calibration of VISSIM for a Congested Freeway. California PATH Research Report UCB-ITS-PRR-2004-4. ISSN 1055-1425, March 2004.

6. Hourdakis, J., Michalopoulos, G. P. and Kottommannil, J. (2003) Practical Procedure for Calibrating Microscopic Traffic Simulation Models. 2003 TRB Annual Meeting, January 12-16., 2003.

7. Margreiter, M., Spangler, M., Zeh, T. and Carstensen, C. (2015) Bluetooth-Measured Travel Times for Dynamic Re-Routing. In: Proceedings of the 3rd Annual International Conference ACE 2015, Volume 2, Global Science and Technology Forum, Singapore, pp. 447.

8. Park, B. and Won, J. (2006) Microscopic Simulation Model Calibration and Validation Handbook, University of Virginia, Charlottesville, Virginia Transportation Research Council, Charlottesville, available at:

9. Paz, A., Molano, V., Martinez, E., Gaviria, C., Arteaga, C. (2015) Calibration of Traffic flow models using a memetic algorithm, Transportation Research Part C, Vol. 55, pp. 432-443.

10. PTV Group. (2014) Vissim 7 User Manual.

11. Rompis, S., Habtemichael, F., and Cetin, M. (2014) A Methodology for Calibrating Microscopic Simulation for Modeling Traffic Flow under Incidents, 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC) October 8-11, 2014. Qingdao, China.

12. So, J., Ostojic, M., Stevanovic, A., Sajjadi, S., Jolovic, D. (2015) Building, Calibrating and Validating a Large-Scale High-Fidelity Microscopic Traffic simulation Model - A Manual Approach, 95th Transportation Research Board Annual Meeting Proceedings, 2015.

13. Wisconsin Department of Transportation. (2002) Microsimulion Guidelines, available at:

14. Xin, F. (2013) Entwicklung eines Kalibrierungsverfahrens für Mikrosimulationen auf der Basis von Reisezeitdaten mit Demonstration auf Autobahnen im Norden Muenchens. Master’s Thesis, Chair of Traffic Engineering and Control, Technische Universitaet Muenchen.

15. Young, E. S. (2012) Bluetooth traffic detectors for use as permanently installed travel time instruments, available at: file:///F:/Master%20Thesis%20new/Kaio/Papers%20for%20callibration/BLUETOOTHTRAFFIC-DETECTORS-FOR-USE-AS-PERMANENTLY_X.pdf

Transport and Telecommunication Journal

The Journal of Transport and Telecommunication Institute

Journal Information

Cite Score 2017: 1.21

SCImago Journal Rank (SJR) 2017: 0.294
Source Normalized Impact per Paper (SNIP) 2017: 1.539


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 155 155 21
PDF Downloads 62 62 11