A database of semantic features for chosen concepts (Attested in 8- to 10-year-old Czech pupils)

Open access

Abstract

In this paper, a database of semantic features is presented. 104 nominal concepts from 13 semantic categories were described by young Czech school children. They were asked to respond to the question “what is it, what does it mean?” by listing different kinds of properties for concepts in writing. Their responses were broken down into semantic features and the database was prepared using a set of pre-established rules. The method of database design, with an emphasis on the way features were recorded, is described in detail within this article. The data were statistically analysed and interpreted and the results along with database usage methodologies are discussed. The goal of this research is to produce a complex database to be used in future research relating to semantic features and therefore it has been published online for use by the wider academic community. At present, databases have been published based on data gathered from adult English and Czech speakers; however participation in this study was limited specifically to young Czech-speaking children. Thus, this database is characteristically unique as it provides important insight into this specific age and language group’s conceptual knowledge. The research is inspired primarily by research papers concerning semantic feature production obtained from adult English speakers (McRae, de Sa, and Seidenberg, 1997; McRae, Cree, Seidenberg, and McNorgan, 2005; Vinson and Vigliocco, 2008).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • AHLGREN P. JARNEVING B. and ROUSSEAU R. 2003. Requirements for a cocitation similarity measure with special reference to Pearson’s correlation coefficient. Journal of the American Society for Information Science and Technology vol. 54 no. 6 pp. 550-560.

  • ALDRICH J. 1995. Correlations genuine and spurious in Pearson and Yule. Statistical Science vol. 10 no. 4 pp. 364-376. doi:

    • Crossref
    • Export Citation
  • BARBAROTTO R. LAIACONA M. and CAPITANI E. 2008. Does sex influence the age of acquisition of common names? A contrast of different semantic categories. Cortex vol. 44 no. 9 pp. 1161-1170.

  • BARSALOU L. W. YEH W. LUKA B. J. OLSETH K. L. MIX K. S. and WU L. 1993. Concepts and meaning. barsaloulab.org [Accessed 20 March 2017]. Available at: http://barsaloulab.org/Online_Articles/1993-Barsalou_et_al-chap-concepts_meaning.pdf

  • BLOOM P. 2000. How children learn the meanings of words. Massachusetts: The MIT Press.

  • CAREY S. 2009. The origin of concepts. New York: Oxford University Press.

  • CREE G. S. and McRAE K. 2003. Analyzing the factors underlying the structure and computation of the meaning of chipmunk cherry chisel cheese and cello (and many other such concrete nouns). Journal of Experimental Psychology: General vol. 132 no. 2 pp. 163-201.

  • ČERVENÁ V. et. al 2005. Slovník spisovné češtiny pro školu a veřejnost. Praha: Academia.

  • EGGHE L. and LEYDESDORFF L. 2009. The relation between Pearson’s correlation coefficient r and Salton’s cosine measure. Journal of the American Society for Information Science and Technology vol. 60 no. 5 pp. 1027-1036.

  • EPSKAMP S. CRAMER A. O. J. WALDORP L. J. SCHMITTMANN V. D. and BORSBOOM D. 2012. qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software vol. 48 no. 4 pp. 1-18.

  • GEERAERTS D. 2010. Theories of lexical semantics. Oxford: Oxford University Press.

  • KEIL F. C. 1989. Concepts kinds and cognitive development. Massachusetts: The MIT Press.

  • KONEČNÁ K. and VEČEŘOVÁ L. 2016. Baterie sémantických rysů: data získaná od dětí z třetích tříd základních škol - zpráva z pilotního sběru dat. Studie z aplikované lingvistiky vol. 7 no. 2 pp. 48-71.

  • LAKOFF G. 1987. Women fire and dangerous things. What categories reveal about the mind. Chicago: The University Chicago Press.

  • McRAE K. CREE G. S. SEIDENBERG M. S. and McNORGAN C. 2005. Semantic feature production norms for a large set of living and non-living things. Behavior Research Methods Instruments & Computers vol. 37 no. 4 pp. 547-559.

  • McRAE K. de SA V. R. and SEIDENBERG M. S. 1997. On the nature and scope of featural representations of word meaning. Journal of Experimental Psychology: General vol. 126 no. 2 pp. 99-130.

  • MEDIN D. L. 1989. Concepts and conceptual structure. American Psychologist vol. 44 no. 12 pp. 1469-1481.

  • MURPHY G. L. 2002. The big book of concepts. Massachusetts: The MIT Press.

  • NAGY M. 2014. Produkce sémantických rysů u dospělých mluvčích. In: J. Keseelová M. Imrichová M. Ološtiak eds. Registre jazyka a jazykovedy (I). Prešov: Filozofická fakulta Prešovskej university v Prešove pp. 237-249.

  • POSNANSKY C. J. 1978. Category norms for verbal items in 25 categories for children in grades 2-6. Behavior Research Methods & Instrumentation vol. 10 no. 6 pp. 819-832.

  • PRŮCHA J. 2011. Dětská řeč a komunikace : poznatky vývojové psycholingvistiky. Praha: Grada Publishing.

  • ROSCH E. and MERVIS C. B. 1975. Family resemblances: Studies in the internal structure of categories. Cognitive psychology vol. 7 no. 4 pp. 573-605.

  • ROSCH E. and LLOYD B. B. 1978. Cognition and categorization. Hillsdale: Lawrence Erlbaum Associates.

  • SALTON G. and McGILL M. J. 1983. Introduction to modern information retrieval. Auckland etc.: McGraw-Hill.

  • VÁGNEROVÁ M. 2001. Kognitivní a sociální psychologie žáka základní školy. Praha: Karolinum.

  • VINSON D. P. and VIGLIOCCO G. 2008. Semantic feature production norms for a large set of objects and events. Behavior Research Methods vol. 40 no. 1 (psychology module) pp. 183-190. The database is available at: http://www.childrenfeatures.webnode.cz

Search
Journal information
Impact Factor


CiteScore 2018: 0.25

SCImago Journal Rank (SJR) 2018: 0.144
Source Normalized Impact per Paper (SNIP) 2018: 0.447

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 241 96 4
PDF Downloads 139 59 6