Plimpton 322 : A Universal Cuneiform Table for Old Babylonian Mathematicians, Builders, Surveyors and Teachers

Open access


This article deals with the damaged and incomplete Old Babylonian tablet Plimpton 322 which contains 4 columns and 15 rows of a cuneiform mathematical text. It has been shown that the presumed original table with its 7 columns and 39 rows represented: a table of square roots of numbers from 0 to 2 for mathematicians; an earliest rudiments of a trigonometric table for builders and surveyors where angles are not measured as an arc in a unit circle but as a side of a unit right-angled triangle; a list of the 39 exercises on reciprocal pairs, unit and integer-side right triangles (rectangles), factorization and square numbers for teachers.

The article provides new arguments in favor of old disputes (squares of diagonals or widths; mistakes in previous analysis of errors in P322). Contradictory ideas about P322 are discussed: Is it the table of triangle sides or factorization terms? Was it compiled by a parallel or independent factorization of the sides or of their squares? Are sides of an initial unit triangle enlarged or reduced by such a factorization? Does it contain two or four arithmetical errors?

Time and dimensional requirements for calculation and writing of the complete tablet have been also estimated.

[1] NEUGEBAUER, O.—SACHS, A. J.: Mathematical Cuneiform Texts. With a Chapter by A. Goetze. American Oriental Series, Vol. 29, American Oriental Society and the American Schools of Oriental Research, New Haven Connecticut, 1945.

[2] BRUINS, E. M.: On Plimpton 322. Pythagorean numbers in Babylonian mathematics, Proc. Akad. Wet. Amsterdam 52 (1949), 629–632.

[3] DE SOLLA PRICE, D. J.: The Babylonian Pythagorean triangle tablet, Centaurus 10 (1964), 219–231.

[4] FRIBERG, J.: Methods and traditions of Babylonian mathematics. Plimpton 322, Pythagorean triples, and the Babylonian triangle parameter equations, Hist. Math. 8 (1981), 277–318.

[5] HØYRUP, J.: Algebra and naive geometry. An investigation of some basic aspects of Old Babylonian mathematical thought, Altorientalische Forschungen 17 (1990), 262–266.

[6] JOYCE, D. E.: Plimpton 322, Department of Math. and Comput. Sci., Clark University, 1995; http:/

[7] ROBSON, E.: Neither Sherlock Holmes nor Babylon: a reassessment of Plimpton 322. Hist. Math. 28 (2001), 1–40.

[8] CASSELMAN, W.: The Babylonian Tablet Plimpton 322, University of British Columbia, Vancouver, BC, Canada, 2003;

[9] FRIBERG, J.: A remarkable collection of Babylonian mathematical texts, sources and studies in the history of mathematics and physical sciences, (especially, Appendix 8 Plimpton 322, a Table of Parameters for Problems), Springer, Berlin, 2007, pp. 433–452.

[10] BRITTON, J. P.—PROUST, CH.—SHNIDER, S.: Plimpton 322: a review and a different perspective, Arch. Hist. Exact Sci. 65 (2011), 519–566.

[11] PROUST, CH.: Trouver Toutes les Diagonales. Plimpton 322:à la Recherche des Rectangles Sexagésimaux, Une Version Mésopotamienne de la Recherche des “Triplets Pythagoriciens”, Images des Mathématiques, 2015.

[12] ROBSON, E.: Words and pictures: New light on Plimpton 322, Amer. Math. Monthly 109 (2001), 105–120.

[13] ABDULAZIZ, A. A.: The Plimpton 322 tablet and the Babylonian method of generating Pythagorean triples, University of Balamand, 2010, 1–34;

[14] ANAGNOSTAKIS, C.—GOLDSTEIN, B. R.: On an error in the Babylonian table of Pythagorean triples, Centaurus 18 (1974), 64–66.

[15] NEUGEBAUER, O.: Mathematische Keilschriftexte. Mathematical Cuneiform Texts, Edition with Translation and Commentary in German, Zweiter Teil/Dritter Teil, Springer-Verlag, Berlin, 1973; Glossar 30, 32, 12.

[16] HANKO, M.—HAUPTVOGL, M.—HAUPTVOGL, H.: (Personal communications.)

[17] BRUINS, E. M.: Pythagorean triads in Babylonian mathematics. The Mathematical Gazette 41 (1957), 25–28.

[18] PROUST, CH.: On the nature of the table Plimpton 322, Mathematisches Forschunginstitut Oberwolfach, Oberwolfach Report 12/2011, 664–666.

[19] KARATSUBA, A.—OFMAN, YU.: Multiplication of many-digital numbers by automatic computers. Proc. of the USSR Academy of Sci. 145 (1962), 293–294.

Tatra Mountains Mathematical Publications

The Journal of Slovak Academy of Sciences

Journal Information

CiteScore 2017: 0.37

SCImago Journal Rank (SJR) 2017: 0.363
Source Normalized Impact per Paper (SNIP) 2017: 0.482

Mathematical Citation Quotient (MCQ) 2017: 0.14

Target Group

researchers in the all fields of mathematical research


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 143 143 10
PDF Downloads 89 89 11