Convergence of the Solutions for a Neutral Difference Equation with Negative Coefficients

George E. Chatzarakis 1  and George N. Miliaras 2
  • 1 Department of Electrical Engineering Educators, School of Pedagogical and Technological Education (ASPETE), 14121, N. Heraklio, Athens, GREECE
  • 2 American University of Athens, Andrianiou 9, N. Psychico, 11525, Athens, GREECE

Abstract

In this paper, we investigate the asymptotic behavior of the solutions of a neutral type difference equation of the form

where τj (n), j = 1, . . . , w are general retarded arguments, σ(n) is a general deviated argument, [###] is a sequence of positive real numbers such that p(n) ≥ p, p ∈ R+, and Δ denotes the forward difference operator Δx(n) = x(n + 1) − x(n).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] AGARWAL, R. P.-BOHNER, M.-GRACE, S. R.-O’REGAN, D.: Discrete Oscillation Theory. Hindawi Publishing Corporation, New York, 2005.

  • [2] BAŠTINEC, J.-DIBLÍK, J.-ŠMARDA, Z.: Oscillation of solutions of a linear second- -order discrete-delayed equation, Adv. Difference Equ. Vol. 2010, Article ID 693867, 12 p., 2010.

  • [3] BAŠTINEC, J.-DIBLÍK, J.-ŠMARDA, Z.: Existence of positive solutions of discrete linear equations with a single delay, J. Difference Equ. Appl. 16 (2010), 1047-1056.

  • [4] BELLMAN, R.-COOKE, K. L.: Differential-Difference Equations. Academic Press, New York, 1963.

  • [5] BRAYTON, R. K.-WILLOUGHBY, R. A.: On the numerical integration of a symmetric system of difference-differential equations of neutral type, J. Math. Anal. Appl. 18 (1967), 182-189.

  • [6] BRUMLEY, W. E.: On the asymptotic behavior of solutions of differential-difference equations of neutral type, J. Difference Equ. 7 (1970), 175-188.

  • [7] CHATZARAKIS, G. E.-KARAKOSTAS, G. L.-STAVROULAKIS, I. P.: Convergence of the positive solutions of a nonlinear neutral difference equation, Nonlinear Oscill. 14 (2011), 407-418.

  • [8] CHATZARAKIS, G. E.-MILIARAS, G. N.: Convergence and divergence of the solutions of a neutral difference equation, J. Appl. Math., Vol. 2011, Article ID 262316, 18 p., 2011.

  • [9] DIBLÍK, J.-RUŽIČKOVÁ, M.-ŠMARDA, Z.-ŠUTÁ, Z.: Asymptotic convergence of the solutions of a dynamic equation on discrete time scales, Abstr. Appl. Anal., Vol. 2012, Article ID 580750, 20 p., 2012.

  • [10] GEORGIOU, D. A.-GROVE, E. A.-LADAS, G.: Oscillation of neutral difference equations with variable coefficients, in: Differential Equations, Stability and Control, Lecture Notes in Pure and Appl. Math., Vol. 127, Dekker, New York, 1991, pp. 165-173.

  • [11] GY˝ORI, I.-HORVÁTH, L.: Asymptotic constancy in linear difference equations: limit formulae and sharp conditions, Adv. Difference Equ., Vol. 2010, Article ID 789302, 20 p., 2010.

  • [12] GY˝ORI, I.-LADAS, G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford, 1991.

  • [13] HUNG, D. C.: Oscillation and convergence for a neutral difference equation, J. Sci., Math.-Phys. 24 (2008), 133-143.

  • [14] JIA, J.-ZHONG, X.-GONG, X.-QUYANG, R.-HAN, H.: Nonoscillation of first- -order neutral difference equation, Mod. Appl. Sci. 3 (2009), 30-33.

  • [15] LALLI, B. S.-ZHANG, B. G.: On existence of positive solutions and bounded oscillations for neutral difference equations, J. Math. Anal. Appl. 166 (1992), 272-287.

  • [16] LALLI, B. S.-ZHANG, B. G.-LI, J. Z.: On the oscillation of solutions of neutral difference equations, J. Math. Anal. Appl. 158 (1991), 213-233.

  • [17] MIGDA, M.-ZHANG, G.: On unstable neutral difference equations with maxima, Math. Slovaca 56 (2006), 451-463.

  • [18] PEICS, H.: Positive solutions of neutral delay difference equation, Novi Sad J. Math. 35 (2005), 111-122.

  • [19] SNOW, W.: Existence, uniqueness and stability for nonlinear differential-difference equations in the neutral case, N. Y. U. Courant, Inst. Math. Sci., IMM-NYU 328 (February 1965).

  • [20] TANG, X. H.: Asymptotic behavior of solutions for neutral difference equations, Comput. Math. Appl. 44 (2002), 301-315.

  • [21] TANG, X. H.-CHENG, S. S.: Positive solutions of a neutral difference equation with positive and negative coefficients, Georgian Math. J. 11 (2004), 177-185.

  • [22] THANDAPANI, E.-KUMAR, P. M.: Oscillation and nonoscillation of nonlinear neutral delay difference equations, Tamkang J. Math. 38 (2007), 323-333.

  • [23] THANDAPANI, E.-ARUL, R.-RAJA, P. S.: The asymptotic behavior of nonoscillatory solutions of nonlinear neutral type difference equations, Math. Comput. Modelling 39 (2004), 1457-1465.

  • [24] THANDAPANI, E.-MARIAN, S. L.-GRAEF, J. R.: Asymptotic behavior of non oscillatory solutions of neutral difference equations, Comput. Math. Appl. 45 (2003), 1461-1468.

  • [25] WANG, X.: Asymptotic behavior of solutions for neutral difference equations, Comput. Math. Appl. 52 (2006), 1595-1602.

  • [26] WEI, J.: Asymptotic behavior results for nonlinear neutral delay difference equations, Appl. Math. Comput. 217 (2011), 7184-7190.

  • [27] YU, J. S.-WANG, Z. C.: Asymptotic behavior and oscillation in neutral delay difference equations, Funkcial. Ekvac. 37 (1994), 241-248.

OPEN ACCESS

Journal + Issues

Search