Schur-convexity of the Catalan–Qi function related to the Catalan numbers

Open access

Abstract

In the paper, the authors present the Schur-convexity of the absolute of the logarithm of the Catalan-Qi function and prove the logarithmically complete monotonicity of the Catalan-Qi function.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R. D. Atanassov and U. V. Tsoukrovski Some properties of a class of logarithmically completely monotonic functions C. R. Acad. Bulgare Sci. 41 (1988) no. 2 21-23.

  • [2] C. Berg Integral representation of some functions related to the gamma function Mediterr. J. Math. 1 (2004) no. 4 433-439; Available online at http://dx.doi.org/10.1007/s00009-004-0022-6.

  • [3] Y.-M. Chu X.-M. Zhang and G.-D. Wang The Schur geometrical convexity of the extended mean values J. Convex Anal. 15 (2008) no. 4 707-718.

  • [4] R. L. Graham D. E. Knuth and O. Patashnik Concrete Mathematics|A Foundation for Computer Science 2nd ed. Addison-Wesley Publishing Company Reading MA 1994.

  • [5] B.-N. Guo F. Qi J.-L. Zhao and Q.-M. Luo Sharp inequalities for polygamma functions Math. Slovaca 65 (2015) no. 1 103-120; Available online at http://dx.doi.org/10.1515/ms-2015-0010.

  • [6] S. Guo F. Qi and H. M. Srivastava A class of logarithmically completely monotonic functions related to the gamma function with applications Integral Transforms Spec. Funct. 23 (2012) no. 8 557-566; Available online at http://dx.doi.org/10.1080/10652469.2011.611331.

  • [7] T. Koshy Catalan Numbers with Applications Oxford University Press Oxford 2009.

  • [8] F.-F. Liu X.-T. Shi and F. Qi A logarithmically completely monotonic function involving the gamma function and originating from the Catalan numbers and function Glob. J. Math. Anal. 3 (2015) no. 4 140-144; Available online at http://dx.doi.org/10.14419/gjma.v3i4.5187.

  • [9] M. Mahmoud and F. Qi Three identities of the Catalan-Qi numbers Mathematics 4 (2016) no. 2 Article 35 7 pages; Available online at http://dx.doi.org/10.3390/math4020035.

  • [10] A. W. Marshall I. Olkin and B. C. Arnold Inequalities: Theory of Majorization and its Applications 2nd Ed. Springer Verlag New York-Dordrecht-Heidelberg-London 2011; Available online at http://dx.doi.org/10.1007/978-0-387-68276-1.

  • [11] J. E. Pečarić F. Proschan and Y. L. Tong Convex Functions Partial Orderings and Statistical Applications Mathematics in Science and Engineering 187 Academic Press 1992.

  • [12] F. Qi A note on Schur-convexity of extended mean values Rocky Mountain J. Math. 35 (2005) no. 5 1787-1793; Available online at http://dx.doi.org/10.1216/rmjm/1181069663.

  • [13] F. Qi Asymptotic expansions complete monotonicity and inequalities of the Catalan numbers ResearchGate Technical Report (2015) available online at http://dx.doi.org/10.13140/RG.2.1.4371.6321.

  • [14] F. Qi Bounds for the ratio of two gamma functions J. Inequal. Appl. 2010 (2010) Article ID 493058 84 pages; Available online at http://dx.doi.org/10.1155/2010/493058.

  • [15] F. Qi Some properties and generalizations of the Catalan Fuss and Fuss-Catalan numbers ResearchGate Research (2015) available online at http://dx.doi.org/10.13140/RG.2.1.1778.3128.

  • [16] F. Qi Two product representations and several properties of the Fuss-Catalan numbers ResearchGate Research (2015) available online at http://dx.doi.org/10.13140/RG.2.1.1655.6004.

  • [17] F. Qi and C.-P. Chen A complete monotonicity property of the gamma function J. Math. Anal. Appl. 296 (2004) 603-607; Available online at http://dx.doi.org/10.1016/j.jmaa.2004.04.026.

  • [18] F. Qi and B.-N. Guo Complete monotonicities of functions involving the gamma and digamma functions RGMIA Res. Rep. Coll. 7 (2004) no. 1 Art. 8 63-72; Available online at http://rgmia.org/v7n1.php.

  • [19] F. Qi and B.-N. Guo Logarithmically complete monotonicity of a function related to the Catalan-Qi function Acta Univ. Sapientiae Math. 8 (2016) no. 1 93-102; Available online at http://dx.doi.org/10.1515/ausm-2016-0006.

  • [20] F. Qi and B.-N. Guo Logarithmically complete monotonicity of Catalan-Qi function related to Catalan numbers Cogent Math. (2016) 3:1179379 6 pages; Available online at http://dx.doi.org/10.1080/23311835.2016.1179379.

  • [21] F. Qi S. Guo and B.-N. Guo Complete monotonicity of some functions involving polygamma functions J. Comput. Appl. Math. 233 (2010) no. 9 2149-2160; Available online at http://dx.doi.org/10.1016/j.cam.2009.09.044.

  • [22] F. Qi and W.-H. Li A logarithmically completely monotonic function involving the ratio of gamma functions J. Appl. Anal. Comput. 5 (2015) no. 4 626-634; Available online at http://dx.doi.org/10.11948/2015049.

  • [23] F. Qi Q.-M. Luo and B.-N. Guo Complete monotonicity of a function involving the divided difference of digamma functions Sci. China Math. 56 (2013) no. 11 2315-2325; Available online at http://dx.doi.org/10.1007/s11425-012-4562-0.

  • [24] F. Qi M. Mahmoud X.-T. Shi and F.-F. Liu Some properties of the Catalan-Qi function related to the Catalan numbers SpringerPlus (2016) 5:1126 20 pages; Available online at http://dx.doi.org/10.1186/s40064-016-2793-1.

  • [25] F. Qi J. Sändor S. S. Dragomir and A. Sofo Notes on the Schur-convexity of the extended mean values Taiwanese J. Math. 9 (2005) no. 3 411-420.

  • [26] F. Qi X.-T. Shi and F.-F. Liu An integral representation complete monotonicity and inequalities of the Catalan numbers ResearchGate Technical Report (2015) available online at http://dx.doi.org/10.13140/RG.2.1.3754.4806.

  • [27] F. Qi X.-T. Shi F.-F. Liu and D. V. Kruchinin Several formulas for special values of the Bell polynomials of the second kind and applications J. Appl. Anal. Comput. (2017) in press; ResearchGate Technical Report (2015) available online at http://dx.doi.org/10.13140/RG.2.1.3230.1927.

  • [28] F. Qi X.-T. Shi M. Mahmoud and F.-F. Liu The Catalan numbers: a generalization an exponential representation and some properties J. Comput. Anal. Appl. 23 (2017) no. 5 937-944.

  • [29] F. Qi X.-T. Shi M. Mahmoud and F.-F. Liu Schur-convexity of the Catalan-Qi function related to the Catalan numbers ResearchGate Technical Report (2015) available online at http://dx.doi.org/10.13140/RG.2.1.2434.4802.

  • [30] F. Qi C.-F. Wei and B.-N. Guo Complete monotonicity of a function involving the ratio of gamma functions and applications Banach J. Math. Anal. 6 (2012) no. 1 35-44; Available online at http://dx.doi.org/10.15352/bjma/1337014663.

  • [31] A. W. Roberts and D. E. Varberg Convex Functions Pure and Applied Mathematics 57 Academic Press [A subsidiary of Harcourt Brace Jovanovich Publishers] New York-London 1973.

  • [32] R. L. Schilling R. Song and Z. Vondraček Bernstein Functions|Theory and Applications 2nd ed. de Gruyter Studies in Mathematics 37 Walter de Gruyter Berlin Germany 2012; Available online at http://dx.doi.org/10.1515/9783110269338.

  • [33] X.-T. Shi F.-F. Liu and F. Qi An integral representation of the Catalan numbers Glob. J. Math. Anal. 3 (2015) no. 3 130-133; Available online at http://dx.doi.org/10.14419/gjma.v3i3.5055.

  • [34] H.-N. Shi S.-H. Wu and F. Qi An alternative note on the Schur-convexity of the extended mean values Math. Inequal. Appl. 9 (2006) no. 2 219-224; Available online at http://dx.doi.org/10.7153/mia-09-22.

  • [35] J. Sun Z.-L. Sun B.-Y. Xi and F. Qi Schur-geometric and Schur-harmonic convexity of an integral mean for convex functions Turkish J. Anal. Number Theory 3 (2015) no. 3 87-89; Available online at http://dx.doi.org/10.12691/tjant-3-3-4.

  • [36] D. V. Widder The Laplace Transform Princeton Mathematical Series 6 Princeton University Press Princeton N. J. 1941.

  • [37] Y. Wu and F. Qi Schur-harmonic convexity for differences of some means Analysis (Munich) 32 (2012) no. 4 263-270; Available online at http://dx.doi.org/10.1524/anly.2012.1171.

  • [38] Y. Wu F. Qi and H.-N. Shi Schur-harmonic convexity for differences of some special means in two variables J. Math. Inequal. 8 (2014) no. 2 321-330; Available online at http://dx.doi.org/10.7153/jmi-08-23.

  • [39] W.-F. Xia and Y.-M. Chu Schur-convexity for a class of symmetric functions and its applications J. Inequal. Appl. 2009 (2009) Article ID 493759 15 pages; Avalible online at http://dx.doi.org/10.1155/2009/493759.

  • [40] Z.-H. Yang Schur power convexity of Stolarsky means Publ. Math. Debrecen 80 (2012) no. 1-2 43-66; Available online at http://dx.doi.org/10.5486/PMD.2012.4812.

  • [41] H.-P. Yin H.-N. Shi and F. Qi On Schur m-power convexity for ratios of some means J. Math. Inequal. 9 (2015) no. 1 145-153; Available online at http://dx.doi.org/10.7153/jmi-09-14.

Search
Journal information
Impact Factor


Mathematical Citation Quotient (MCQ) 2017: 0.11

Target audience:

researchers in all areas of mathematics

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 511 89 1
PDF Downloads 97 42 2