Gabor frames on local fields of positive characteristic

Open access

Abstract

Gabor frames have gained considerable popularity during the past decade, primarily due to their substantiated applications in diverse and widespread fields of engineering and science. Finding general and verifiable conditions which imply that the Gabor systems are Gabor frames is among the core problems in time-frequency analysis. In this paper, we give some simple and sufficient conditions that ensure a Gabor system {Mu(m)bTu(n)ag =: χm(bx)g(x-u(n)a} m,n∈ℕ₀ to be a frame for L2(K). The conditions proposed are stated in terms of the Fourier transforms of the Gabor system’s generating functions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R.J. Duffin and A.C. Shaeffer A class of nonharmonic Fourier series Transactions of the American Mathematical Society vol. 72 pp. 341-366 1952.

  • [2] I. Daubechies A. Grossmann and Y. Meyer Painless non-orthogonal expansions Journal of Mathematical Physics vol. 27 no. 5 pp. 1271-1283 1986.

  • [3] O. Christensen An Introduction to Frames and Riesz Bases Birkhäuser Boston 2015.

  • [4] L. Debnath and F. A. Shah Wavelet Transforms and Their Applications Birkhäuser New York 2015.

  • [5] A. Ron and Z. Shen Weyl-Heisenberg frames and Riesz bases in L2(Rd) Duke Mathematics Journal vol. 89 pp. 237- 282 1997.

  • [6] K. Gröchenig A.J. Janssen N. Kaiblinger and GE. Pfander Note on B-splines wavelet scaling functions and Gabor frames IEEE Transactions and information Theory vol. 49 no. 12 pp. 3318-3320 2003.

  • [7] P.G. Casazza and O. Christensen Weyl-Heisenberg frames for subspaces of L2(R) Proceedings of American Mathematical Society vol. 129 pp. 145-154 2001.

  • [8] K.Wang Necessary and sufficient conditions for expansions of Gabor type Analysis in Theory and Applications vol. 22 pp. 155-171 2006.

  • [9] X.L. Shi and F. Chen Necessary conditions for Gabor frames Science in China : Series A. vol. 50 no. 2 pp. 276-284 2007.

  • [10] D. Li G. Wu and X. Zhang Two sufficient conditions in frequency domain for Gabor frames Applied Mathematics Letters vol. 24 pp. 506-511 2011.

  • [11] K. Gröchenig Foundation of Time-Frequency Analysis Birkhäuser Boston 2001.

  • [12] H.G. Feichtinger and T. Strohmer Advances in Gabor Analysis Birkhäuser Boston 2003.

  • [13] M.H. Taibleson Fourier Analysis on Local Fields Princeton University Press Princeton NJ 1975.

  • [14] D. Li and H.K. Jiang Basic results Gabor frame on local fields Chinese Annals of Mathematics: Series B vol. 28 no. 2 pp. 165-176 2007.

  • [15] D. Li and M.A. Jun Characterization of Gabor tight frames on local fields Chinese Journal of Contemporary Mathematics vol. 36 pp. 13-20 2015.

  • [16] F.A. Shah Gabor frames on a half-line Journal of Contemporary Mathematical Analysis vol. 47 no. 5 pp. 251-260 2012.

  • [17] F.A. Shah and Abdullah Wave packet frames on local fields of positive characteristic Applied Mathematics and Computation vol. 249 pp. 133-141 2014.

  • [18] F.A. Shah and Abdullah A characterization of tight wavelet frames on local fields of positive characteristic Journal of Contemporary Mathematical analysis vol. 49 pp. 251-259 2014.

  • [19] F.A. Shah and M.Y. Bhat Semi-orthogonal wavelet frames on local fields Analysis vol. 36 pp. 173-182 2016.

  • [20] D. Li G. Wu and X. Yang Unified conditions for wavelet frames Georgian Mathematical Journal vol. 18 pp. 761-776 2011.

Search
Journal information
Impact Factor


Mathematical Citation Quotient (MCQ) 2017: 0.11

Target audience:

researchers in all areas of mathematics

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 30 1
PDF Downloads 99 30 1