On radical classes of hemirings

Open access

Abstract

Based on the concept of accessible subhemirings and inspired by the work on the general Kurosh-Amitsur radical theory for rings, this paper studies the lower radical classes and the hereditary radical classes of hemirings. We characterize radical classes of hemirings, and con- struct a lower radical class from a homomorphically closed class. We provide a necessary and sufficient condition under which an upper radical class of hemirings becomes hereditary and prove that an upper radical class of a regular class of semirings is hereditary. Besides, we show that the Brown-McCoy radical class and a Jacobson-type radical class are hereditary.

[1] L. Marki, R. Mlitz and R. Wiegandt. A general Kurosh-Amitsur radical theory. Commun. Algebra, 16:249{305, 1988.

[2] D. M. Olson and T. L. Jenkins. Radical theory for hemirings. J. Nature. Sci. Math., 23:23{32, 1983.

[3] D. M. Olson and A. C. Nance. A note on radical for hemirings. Quaestiones Mathematicae, 12:307{314, 1989.

[4] D. M. Olson, G. A. P. Heyman and L. H. LeRoux. Weakly special classes of hemirings. Quaestiones Mathematicae, 15:119{126, 1992.

[5] D. M. Olson, L. H. LeRoux and G. A. P. Heyman. Three special classes for hemirings. Quaes- tiones Mathematicae, 17:205{215, 1994.

[6] J. Gardner and R. Wiegandt. Radical Theory of Rings. CRC, 2003.

[7] U. Hebisch and H. J. Weinert. Radical theory for semirings. Quaestiones Mathematicae, 20(4):647{661, 1997.

[8] B. Morak. On the radical theory for semirings. Contributions to Algebra and Geometry, 40(2):533{549, 1999.

[9] U. Hebisch and H. J. Weinert. On the interrelation between radical theories for semirings and rings. Commun. Algebra, 29:109{129, 2001.

[10] U. Hebisch and H. J. Weinert. Semisimple classes of semirings. Algebra Colloquium, 2:177{196, 2002.

[11] Y. Katsov and T. G. Nam. On radicals of semirings and related problems. Commun. Algebra, 42:5065{5099, 2014.

[12] J. Golan. Semirings and their Applications. Kluwer Academic Publishers, Dordrecht-Boston- London, 1999.

[13] R. El Bashir, J. Hurt, A. Jancarik, and T. Kepka. Simple commutative semirings. J. Algebra, 236:277{306, 2001.

[14] M. Zulfiqar. A note on lower radicals of hemirings. Bulletin of the Korean Mathematical Society, 45(4):757{762, 2008.

[15] Y.-L. Lee. On the construction of lower radical properties. Pacific J. Math., 28:393{395, 1969.

[16] J. F. Watters. Lower radicals in associative rings. Canad. J. Math., 21:466{476, 1969.