ome approximation properties of generalized integral type operators

Open access

Abstract

In this paper we introduce and study the Stancu type generalization of the integral type operators defined in (1.1). First, we obtain the moments of the operators and then prove the Voronovskaja type asymptotic theorem and basic convergence theorem. Next, the rate of convergence and weighted approximation for the above operators are discussed. Then, weighted Lp-approximation and pointwise estimates are studied. Further, we study the A-statistical convergence of these operators. Lastly, we give better estimations of the above operators using King type approach.

References

  • [1] T. Acar, L.N. Mishra, V.N. Mishra, Simultaneous Approximation for Generalized Srivastava- Gupta Operators, Journal of Function Spaces Volume 2015, Article ID 936308, 11 pages.

  • [2] R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer, Berlin (1993).

  • [3] O. Duman, C. Orhan, Statistical approximation by positive linear operators, Studia Math., 161(2) (2004), 187-197.

  • [4] E. Deniz, A. Aral, G. Ulusoy, New integral type operators, Filomat, 31:9 (2017), 2851-2865.

  • [5] A.D. Gadjiev, Theorems of the type of P. P. korovkin's theorems, Matematicheskie Zametki, 20(5) (1976), 781-786.

  • [6] A.D. Gadjiev, The convergence problem for a sequence of positive linear operators on bounded sets and theorems analogous to that of P.P. Korovkin, Dokl. Akad. Nauk SSSR 218(5) (1974); Transl. in Soviet Math. Dokl. 15(5) (1974), 1433-1436.

  • [7] A.D. Gadjiev, A. Aral, The Weighted Lp-approximation with positive linear operators on unbounded sets, Appl. Math. Letters, 20 (2007), 1046-1051.

  • [8] A.D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain. J. Math., 32(1) (2002), 129-138.

  • [9] A.R. Gairola, Deepmala, L.N. Mishra, On the q-derivatives of a certain linear positive operators, Iranian Journal of Science and Technology, Transactions A: Science, (2017), DOI 10.1007/s40995-017-0227-8.

  • [10] A.R. Gairola, Deepmala, L.N. Mishra, Rate of Approximation by Finite Iterates of q-Durrmeyer Operators, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. (April-June 2016) 86(2):229-234 (2016). doi: 10.1007/s40010-016-0267-z

  • [11] R.B. Gandhi, Deepmala, V.N. Mishra, Local and global results for modified Szfiasz-Mirakjan operators, Math. Method. Appl. Sci., Vol. 40, Issue 7, (2017), pp. 2491-2504.

  • [12] M. Heilmann, Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory and Its Appl., 5(1) (1989), 105-127.

  • [13] G.C. Jain, Approximation of functions by a new class of linear operators, J. Aust. Math. Soc., 13:3 (1972), 271-276.

  • [14] A. Kumar, Voronovskaja type asymptotic approximation by general Gamma type operators, Int. J. of Mathematics and its Applications, 3(4-B) (2015), 71-78.

  • [15] A. Kumar, Approximation by Stancu type generalized Srivastava-Gupta operators based on certain parameter, Khayyam J. Math., Vol. 3, no. 2 (2017), pp. 147-159. DOI: 10.22034/kjm.2017.49477

  • [16] A. Kumar, General Gamma type operators in Lp spaces, Palestine Journal of Mathematics, 7(1) (2018), 73-79.

  • [17] A. Kumar, D.K. Vishwakarma, Global approximation theorems for general Gamma type operators, Int. J. of Adv. in Appl. Math. and Mech., 3(2) (2015), 77-83.

  • [18] A. Kumar, L.N. Mishra, Approximation by modified Jain-Baskakov-Stancu operators, Tbilisi Mathematical Journal, 10(2) (2017), pp. 185-199.

  • [19] A. Kumar, V.N. Mishra, Dipti Tapiawala, Stancu type generalization of modified Srivastava- Gupta operators, Eur. J. Pure Appl. Math., Vol. 10, No. 4 (2017), 890-907.

  • [20] J. P. King, Positive linear operators which preserve x2, Acta Math. Hungar., 99(3) (2003), 203-208.

  • [21] C. P. May, On Phillips operators, J. Approx. Theory, 20 (1977), 315-332.

  • [22] M. Mursaleen, T. Khan, On Approximation by Stancu Type Jakimovski-Leviatan-Durrmeyer Operators, Azerbaijan Journal of Mathematics, V. 7, No 1 (2017), 16-26.

  • [23] V.N. Mishra, Preeti Sharma, On approximation properties of Baskakov-Schurer-Sfizasz operators, arXiv:1508.05292v1 [math.FA] 21 Aug 2015.

  • [24] V.N. Mishra, P. Sharma, L.N. Mishra, On statistical approximation properties of q-Baskakov- Szfiasz-Stancu operators, Journal of Egyptian Mathematical Society, Vol. 24, Issue 3 (2016), pp. 396-401. DOI: 10.1016/j.joems.2015.07.005.

  • [25] V.N. Mishra, K. Khatri, L.N. Mishra, Some approximation properties of q-Baskakov-Beta- Stancu type operators, Journal of Calculus of Variations, Volume 2013, Article ID 814824, 8 pages.

  • [26] V.N. Mishra, K. Khatri, L.N. Mishra, Statistical approximation by Kantorovich-type discrete q- Beta operators, Advances in Difierence Equations 2013, 2013:345, DOI: 10.1186/10.1186/1687- 1847-2013-345.

  • [27] V.N. Mishra, K. Khatri, L.N. Mishra, Deepmala, Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators, Journal of Inequalities and Applications 2013, 2013:586. doi:10.1186/1029-242X-2013-586.

  • [28] V. N. Mishra, Rajiv B. Gandhi, Ram N. Mohapatraa, Summation-Integral type modification of Sfizasz-Mirakjan-Stancu operators, J. Numer. Anal. Approx. Theory, vol. 45, no.1 (2016), pp. 27-36.

  • [29] M. A. Özarslan, H. Aktufiglu, Local approximation for certain King type operators, Filomat, 27:1 (2013), 173-181.

  • [30] R.S. Phillips, An inversion formula for Laplace transforms semi-groups of linear operators, Ann. Math., 59 (1954), 325-356.

  • [31] P. Patel, V.N. Mishra, Approximation properties of certain summation integral type operators, Demonstratio Mathematica, Vol. XLVIII no. 1, 2015.

  • [32] D. D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Math. Pures Appl., 13(8) (1968), 1173-1194.

  • [33] O. Szász, Generalization of S. Bernstein's polynomials to the infinite interval, J. Res. Nat. Bur. Stand., 45 (1950), 239-245.

  • [34] D.K. Verma, V. Gupta, P. N. Agrawal, Some approximation properties of Baskakov-Durrmeyer-Stancu operators. Appl. Math. Comput., 218(11) (2012), 6549-6556.