On λ-pseudo bi-starlike and λ-pseudo bi-convex functions with respect to symmetrical points

Open access

Abstract

In this paper, defining new interesting classes, λ-pseudo bi-starlike functions with respect to symmetrical points and λ-pseudo bi-convex functions with respect to symmetrical points in the open unit disk U, we obtain upper bounds for the initial coefficients of functions belonging to these new classes.

References

  • [1] G. Akιn and S. Sümer Eker, Coefficient estimates for a certain class of analytic and bi-univalent functions defined by fractional derivative, C. R. Acad. Sci. Sér. I 352 (2014), 1005-1010.

  • [2] K. O. Babalola, On λ-pseudo-starlike functions, Journal of Classical Analysis, 3 (2) (2013), 137-147.

  • [3] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, in: S. M. Mazhar, A. Hamoui, N. S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, Vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60; See also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986), 70-77.

  • [4] M. Çaglar, E. Deniz and H.M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J.Math., 41 (2017), 694-706.

  • [5] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

  • [6] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.

  • [7] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1) (1959), 72-75.

  • [8] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.

  • [9] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23, (2015) 242-246.

  • [10] H. M. Srivastava, S. Sümer Eker and R. M. Ali, Coefficient Bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), 1839-1845.

  • [11] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Mathematica Scientia, 36, Issue 3, (2016), 863-871.

  • [12] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Africa Mathematica, 28, (2017) 693-706.

  • [13] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Universitatis Apulensis, 41, (2015), 153-164.

  • [14] H. M. Srivastava, S. B. Joshi, S. S. Joshi, H. Pawar,. Coefficient Estimates for Certain Subclasses of Meromorphically Bi-Univalent Functions. Palestine Journal of Mathematics, 5, (2016), 250-258.

  • [15] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial Coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Mathematical Journal 7 (2) (2014), 1-10.

  • [16] T. S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.

  • [17] H. Tang, H.M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szegö Functional Problems For Some Subclasses of m-Fold Symmetric Bi-Univalent Functions, Journal of Mathematical Inequalities, 10 (4), (2016) 1063-1092.

  • [18] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990-994.

  • [19] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated Coefficient estimate problems, Appl. Math. Comput. 218 (2012), 1146-11465.