Stability of the general form of quadratic-quartic functional equations in non-Archimedean L-fuzzy normed spaces

Open access

Abstract

In this paper, we introduce and obtain the general solution of a new generalized mixed quadratic and quartic functional equation and investigate its stability in non-Archimedean L-fuzzy normed spaces.

References

  • [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math . Soc. Japan, 2 (1950), 64-66.

  • [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), No. 1, 87-96.

  • [3] K. Atanassov, Intuitionistic fuzzy sets, VII ITKR's Session, Sofia, June 1983 (Deposed in Central Sci.-Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulg.)

  • [4] T. Bag and S . K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11 (3) (2003) 687-705.

  • [5] R. Biswas, Fuzzy inner product space and fuzzy norm functions, Inform. Sci., 53 (1991), 185-190.

  • [6] A. Bodaghi, Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations, J. Intel. Fuzzy Syst., 30 (2016), 2309-2317.

  • [7] A. Bodaghi, Approximate mixed type additive and quartic functional equation, Bol. Soc. Paran. Mat., 35 (1) (2017), 43-56.

  • [8] A. Bodaghi, Stability of a mixed type additive and quartic function equation, Filomat, 28 (8) (2014), 1629-1640.

  • [9] A. Bodaghi, D. Kang and J. M. Rassias, The mixed cubic-quartic functional equation, An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.), 63, No 1 (2017), 215-227.

  • [10] A. Bodaghi and S. O. Kim, Ulam's type stability of a functional equation deriving from quadratic and additive functions, J. Math. Ineq., 9, No. 1 (2015), 73-84.

  • [11] A. Bodaghi and S. O. Kim, Stability of a functional equation deriving from quadratic and ad- ditive functions in non-Archimedean normed spaces, Abst. Appl. Anal., 2013, Art. ID 198018, 10 pages, doi:10.1155/2013/198018.

  • [12] A. Bodaghi, C. Park and J. M. Rassias, Fundamental stabilities of the nonic functional equation in intuitionistic fuzzy normed spaces, Commun. Korean Math. Soc., 31 (2016), No. 4, 729-743.

  • [13] S. C. Cheng and J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcuta Math. Soc., 86 (1994), 429-436.

  • [14] G. Deschrijver, E. E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Set. Syst., 133 (2003), 227-235.

  • [15] G. Deschrijver, D. O'Regan, R. Saadati, S. M. Vaezpour, L-Fuzzy Euclidean normed spaces and compactness, Chaos Sol. Fract., 42 (2009), 40-45.

  • [16] M. Eshaghi Gordji, S. Abbaszadeh and C. Park, On the stability of a generalized quadratic and quartic type functional equation in quasi-Banach spaces, J. Inequ. Appl., 2009, Art. ID 153084, 26 pages, doi:10.1155/2009/153084.

  • [17] M. Eshaghi Gordji, H. Khodaei and Hark-Mahn Kim, Approximate quartic and quadratic mappings in quasi-Banach spaces, Int. J. Math. Math., Sci., 2011, Art. ID 734567, 18 pages, doi:10.1155/2011/734567.

  • [18] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Set. Syst., 48 (1992), 239-248.

  • [19] P. Găavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.

  • [20] K. Hensel, Uber eine neue Begrndung der Theorie der algebraischen Zahlen, Jahresber, Deutsche Mathematiker-Vereinigung, 6 (1897), 83-88.

  • [21] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222-224.

  • [22] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Set. Syst., 12 (1984), 143-154.

  • [23] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326-334.

  • [24] Y. S. Lee, S. Kim and C. Kim, A stability for the mixed type of quartic and quadratic functional equations, J. Funct. Spaces, 2014, Art. ID 853743, 10 pages.

  • [25] M. S. Moslehian, Gh. Sadeghi, A Mazur-Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal., 69 (2008), 3405-3408.

  • [26] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Sol. Fract., 22 (2004), 1039-1046.

  • [27] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

  • [28] R. Saadati, A note on \Some results on the IF-normed spaces", Chaos Sol. Fract., 41 (2009), 206-213.

  • [29] R. Saadati, Y. J. Cho and J. Vahidi, The stability of the quartic functional equation in various spaces, Compu. Math. Appl., 60 (2010), 1994-2002.

  • [30] R. Saadati and C. Park, Non-archimedean L-fuzzy normed spaces and stability of functional equations, Comput. Math. Appl., 60 (2010), 2488-2496.

  • [31] R. Saadati, A. Razani and H. Adibi, A common fixed point theorem in L-fuzzy metric spaces", Chaos Sol. Fract., 33 (2007), 354-363.

  • [32] R. Saadati and J. Park, On the intuitionistic fuzzy topological spaces, Chaos Sol. Fract., 27 (2006), 331-344.

  • [33] R. Saadati, On the L-Fuzzy topological spaces, Chaos Sol. Fract., 37 (2008), 1419-1426.

  • [34] S. M. Ulam, A Colloection of the Mathematical Problems, Interscience Publ., New York, 1960.

  • [35] C. Wu and J. Fang, Fuzzy generalization of Klomogoroffs theorem, J. Harbin Inst. Tech., 1 (1984), 1-7.

  • [36] T. Z. Xu, M. J. Rassias and W. X. Xu, Stability of a general mixed additive-cubic functional equation in non-archimedean fuzzy normed spaces, J. Math. Physics. Art., 093508, 19 pages, 51 (2010).