A closed form for the Stirling polynomials in terms of the Stirling numbers

Open access

Abstract

In the paper, by virtue of the Faá di Bruno formula and two identities for the Bell polynomial of the second kind, the authors find a closed form for the Stirling polynomials in terms of the Stirling numbers of the first and second kinds.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] L. Comtet Advanced Combinatorics: The Art of Finite and Infinite Expansions Revised and Enlarged Edition D. Reidel Publishing Co. Dordrecht and Boston 1974.

  • [2] B.-N. Guo I. Mező and F. Qi An explicit formula for the Bernoulli polynomials in terms of the r-Stirling numbers of the second kind Rocky Mountain J. Math. 46 (2016) no. 6 1919-1923; Available online at http://dx.doi.org/10.1216/RMJ-2016-46-6-1919.

  • [3] B.-N. Guo and F. Qi An explicit formula for Bernoulli numbers in terms of Stirling numbers of the second kind J. Anal. Number Theory 3 (2015) no. 1 27-30; Available online at http://dx.doi.org/10.12785/jant/030105.

  • [4] B.-N. Guo and F. Qi On inequalities for the exponential and logarithmic functions and means Malays. J. Math. Sci. 10 (2016) no. 1 23-34.

  • [5] B.-N. Guo and F. Qi Some identities and an explicit formula for Bernoulli and Stirling num- bers J. Comput. Appl. Math. 255 (2014) 568-579; Available online at http://dx.doi.org/10.1016/j.cam.2013.06.020.

  • [6] C. Jordan Calculus of Finite Differences Chelsea New York 1965.

  • [7] N. Nielsen Gammafunktionen Leipzig 1906.

  • [8] N. E. Nórlund Vorlesungen 'uber Differenzenrechnung Springer-Verlag Berlin 1924.

  • [9] F. Qi A new formula for the Bernoulli numbers of the second kind in terms of the Stirling numbers of the first kind Publ. Inst. Math. (Beograd) (N.S.) 100 (114) (2016) 243-249; Available online at http://dx.doi.org/10.2298/PIM150501028Q.

  • [10] F. Qi Diagonal recurrence relations inequalities and monotonicity related to the Stirling numbers of the second kind Math. Inequal. Appl. 19 (2016) no. 1 313-323; Available online at http://dx.doi.org/10.7153/mia-19-23.

  • [11] F. Qi Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind Filomat 28 (2014) no. 2 319-327; Available online at http://dx.doi.org/10.2298/FIL1402319O.

  • [12] F. Qi and R. J. Chapman Two closed forms for the Bernoulli polynomials J. Number Theory 159 (2016) 89-100; Available online at http://dx.doi.org/10.1016/j.jnt.2015.07.021.

  • [13] F. Qi and B.-N. Guo A closed form for the Stirling polynomials in terms of the Stirling numbers Preprints 2017 2017030055 4 pages; Available online at http://dx.doi.org/10.20944/preprints201703.0055.v1.

  • [14] F. Qi and B.-N. Guo Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials Mediterr. J. Math. 14 (2017) no. 3 Article 140 14 pages; Available online at http://dx.doi.org/10.1007/s00009-017-0939-1.

  • [15] A. Schreiber Multivariate Stirling polynomials of the first and second kind Discrete Math. 338 (2015) no. 12 2462-2484; Available online at http://dx.doi.org/10.1016/j.disc.2015. 06.008.

  • [16] M. Ward The representation of Stirling's numbers and Stirling's polynomials as sums of factorials Amer. J. Math. 56 (1934) no. 1-4 87-95; Available online at http://dx.doi.org/10.2307/2370916.

  • [17] Z.-Z. Zhang and J.-Z. Yang Notes on some identities related to the partial Bell polynomials Tamsui Oxf. J. Inf. Math. Sci. 28 (2012) no. 1 39-48.

Search
Journal information
Impact Factor


Mathematical Citation Quotient (MCQ) 2017: 0.11

Target audience:

researchers in all areas of mathematics

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 810 400 9
PDF Downloads 159 95 8