We study a construction suggested by Lawvere to rationalize, within a generalization of Axiomatic Cohesion, the classical construction of π_{0} as the image of a natural map to a product of discrete spaces. A particular case of this construction produces, out of a local and hyperconnected geometric morphism p : Ɛ → S, an idempotent monad π_{0} : Ɛ → Ɛ such that, for every X in E, π_{0}X = 1 if and only if (p*Ω)^{!} : (p*Ω)^{1} → (p*Ω)^{X} is an isomorphism. For instance, if E is the topological topos (over S = Set), the π_{0}-algebras coincide with the totally separated (sequential) spaces. To illustrate the connection with classical topology we show that the π_{0}-algebras in the category of compactly generated Hausdorff spaces are exactly the totally separated ones. Also, in order to relate the construction above with the axioms for Cohesion we prove that, for a local and hyperconnected p : Ɛ → S, p is pre-cohesive if and only if p* : S → Ɛ is cartesian closed. In this case, p_{! }= p_{*}π_{0} : Ɛ → S and the category of π_{0}-algebras coincides with the subcategory p* : S → E.
[1] M. Barr and R. Paré. Molecular toposes. J. Pure Appl. Algebra 17(2):127-152 1980.
[2] F. Cagliari S. Mantovani and E.M. Vitale. Regularity of the category of Kelley spaces. Appl. Categ. Struct. 3(4):357-361 1995.
[3] A. Carboni and S. Mantovani. An elementary characterization of categories of separated objects. Journal of pure and applied algebra 89:63-92 1993.
[4] S. P. Franklin. Spaces in which sequences suffice. Fundamenta Mathematicae 57:107-115 1965.
[5] J. M. E. Hyland. Filter spaces and continuous functionals. Annals of mathematical logic 16:101-143 1979.
[6] P. T. Johnstone. On a topological topos. Proceedings of the London mathematical society 38:237-271 1979.
[7] P. T. Johnstone. Stone spaces. Cambridge University Press 1982.
[8] P. T. Johnstone. Sketches of an elephant: a topos theory compendium volume 43-44 of Oxford Logic Guides. The Clarendon Press Oxford University Press New York 2002.
[9] P. T. Johnstone. Remarks on punctual local connectedness. Theory Appl. Categ. 25:51-63 2011.
[10] F. W. Lawvere. Cohesive toposes and Cantor's \lauter Einsen". Philos. Math. (3) 2(1):5-15 1994. Categories in the foundations of mathematics and language.
[11] F. W. Lawvere. Categories of spaces may not be generalized spaces as exemplified by directed graphs. Repr. Theory Appl. Categ. 9:1-7 2005. Reprinted from Rev. Colombiana Mat. 20 (1986) no. 3-4 179-185.
[12] F. W. Lawvere. Axiomatic cohesion. Theory Appl. Categ. 19:41-49 2007.
[13] F. W. Lawvere and M. Menni. Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness. Theory Appl. Categ. 30:909-932 2015.
[14] S. Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer Verlag 1971.
[15] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: a First Introduction to Topos Theory. Universitext. Springer Verlag 1992.
[16] F. Marmolejo and M. Menni. On the relation between continuous and combinatorial. J. Homotopy Relat. Struct. 12(2):379-412 2017.
[17] M. Menni. Continuous cohesion over sets. Theory Appl. Categ. 29:542{568 2014.
[18] M. Menni. Sufficient cohesion over atomic toposes. Cah. Topol. Géom. Différ. Catég. 55(2):113{149 2014.