Indoor air quality improvement in natural ventilation using a fuzzy logic controller

  • 1 Faculty of Environmental and Power Engineering, Cracow University of Technology


The aim of the research was to design and validate the prototype of a device developed to improve the quality of indoor air by supporting the natural ventilation in building. A CO2 sensor and thermo-hygrometer were used to measure the physical parameters of the indoor air. The developed device is based on the Raspberry Pi single-board-computer (SBC) and optical sensors. The prototype casing was made using 3D printing technology. The software was written using the Python 2.7 programming language. The key algorithm of control uses fuzzy logic. The effectiveness of the developed device has been confirmed. The use of the device enabled improvement of the indoor air quality. The presented device may be a solution to improve the indoor air quality by supporting the ventilation system.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ASHRAE Position Document on Indoor Air Quality. (2011). ASHRAE Position Doc.

  • Bakó-Biró, Zs., Clements-Croome, D. J., Kochhar, N., Awbi, H.B., Williams, M.J. (2012). Ventilation rates in schools and pupils’ performance. Build. Environ., 48(1), 215–223.

  • Boor, B. E., Spilak, M. P., Laverge, J., Novoselac, A., Xu, Y. (2017). Human exposure to indoor air pollutants in sleep microenvironments: A literature review. Build. Environ., 125, 528–555.

  • Brzózka, J. (2004). Regulatory i układy automatyki. Warszawa: Wydawnictwo MIKOM.

  • Canha, N., Mandin, C., Ramalho, O., Wyart, G., Ribéron, J., Dassonville, C., Hänninen, O., Almeida, S. M., Derbez, M. (2016). Assessment of ventilation and indoor air pollutants in nursery and elementary schools in France. Indoor Air, 26(3), 350–365.

  • Conditional (computer programming). (2008). Retrieved from (date of access: 2018/02/08).

  • Da Silva, N. A. F. (2012). Energy efficient window opening for air quality control in classrooms.

  • De Giuli, V., Da Pos, O., De Carli, M. (2012). Indoor environmental quality and pupil perception in Italian primary schools. Build. Environ., 56, 335–345.

  • Driankov, D. (1996). Wprowadzenie do sterowania rozmytego. Warszawa: Wydawnictwo Naukowo-Techniczne.

  • Education at a Glance 2015. (2015). OECD Indicators.

  • Fanger P. O., (1999). CEN CR 1752 – European design criteria for the indoor environment published, REHVA Journal, 1, 7.

  • Fanger, P., Popiołek, P., O., Wargocki, P. (Eds.). (2003). Środowisko wewnętrzne: wpływ na zdrowie, komfort i wydajność pracy. Gliwice: Politechnika Śląska.

  • Gao, J., Wargocki, P., Wang, Y. (2014). Ventilation system type, classroom environmental quality and pupils’ perceptions and symptoms. Build. Environ.,75, 203–214.

  • Geelen, L. M. J., Huijbregts, M. A. J., Ragas, A. M. J., Bretveld, R. W., Jans, H. W. A., Van Doorn, W. J., Evertz, S. J. C. J., Van Der Zijden, A. (2008). Comparing the effectiveness of interventions to improve ventilation behavior in primary schools. Indoor Air, 18(5), 416–424.

  • Haverinen-Shaughnessy, U., Shaughnessy, R. J., Cole, E. C., Toyinbo, O., Moschandreas D. J. (2015). An assessment of indoor environmental quality in schools and its association with health and performance. Build. Environ., 93(P1), 35–40.

  • ISO 10551. Ergonomics of the thermal environment e assessment of the influence of the thermal environment using subjective judgement scales. Geneva, 1995.

  • Kulis, C., Bogacki, M. (2016). Ocena mikroklimatu sali dydaktycznej z wentylacją naturalną. Kraków: Akademia Górniczo-Hutnicza.

  • Madureira, J., Paciência, I., Rufo, J., Severo, M., Ramos, E., Barros, H., de Oliveira Fernandes, E. (2016). Source apportionment of CO2, PM10 and VOCs levels and health risk assessment in naturally ventilated primary schools in Porto, Portugal. Build. Environ., 96, 198–205.

  • Mamdani, E. H. (1977). Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis. IEEE Trans. Comput., C-26(12), 1182–1191.

  • Mendell, M. J., Eliseeva, E. A., Davies, M. M., Spears, M., Lobscheid, A., Fisk, W. J., Apte, M. G. (2013). Association of classroom ventilation with reduced illness absence: a prospective study in California elementary schools. Indoor Air, 23(6), 515–528.

  • Petersen, S., Jensen, K. L., Pedersen, A. L. S., Rasmussen, H. S., (2016). The effect of increased classroom ventilation rate indicated by reduced CO2 concentration on the performance of schoolwork by children. Indoor Air, 26(3), 366–379.

  • PN-EN 15251:2012. Parametry wejściowe środowiska wewnętrznego dotyczące projektowania i oceny charakterystyki energetycznej budynków, obejmujące jakość powietrza wewnętrznego, środowisko cieplne, oświetlenie i akustykę, 2012.

  • Połednik, B. (2013). Variations in particle concentrations and indoor air parameters in classrooms in the heating and summer seasons. Archives of Environmental Protection, 39(4), 15–28.

  • Recknagel, H., Sprenger E., Schramek, E., R. (2008). Kompendium wiedzy – ogrzewnictwo, klimatyzacja, ciepła woda, chłodnictwo. Vol. III. Wrocław: Omni Scala.

  • Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz.U.2019.0.1065).

  • Strøm-Tejsen, P., Zukowska, D., Wargocki, P., Wyon, D. P. (2016). The effects of bedroom air quality on sleep and next-day performance. Indoor Air, 26(5), 679–686.

  • Taheri, M., Schuss, M., Fail, A., Mahdavi, A. (2016). A performance assessment of an office space with displacement, personal, and natural ventilation systems. Build. Simul., 9(1), 89–100.

  • Tham, K. W. (2016). Indoor air quality and its effects on humans/A review of challenges and developments in the last 30 years. Energy Build., 130, 637–650.

  • Toftum, J., Kjeldsen, B. U., Wargocki, P., Menå, H. R., Hansen, E. M. N., Clausen, G. (2015). Association between classroom ventilation mode and learning outcome in Danish schools. Build. Environ., 92, 494–503.

  • Turanjanin, V., Vučićević, B., Jovanović, M., Mirkov, N., Lazović, I. (2014). Indoor CO2 measurements in Serbian schools and ventilation rate calculation. Energy, 77, 290–296.

  • Turunen, M., Toyinbo, O., Putus, T., Nevalainen, A., Shaughnessy, R., Haverinen-Shaughnessy, U. (2014). Indoor environmental quality in school buildings, and the health and wellbeing of students. Int. J. Hyg. Environ. Health, 217(7), 733–739.

  • Universal asynchronous receiver-transmitter. (2008). Retrieved from (date of access: 2018/02/08).

  • Wang, J., Smedje, G., Nordquist, T., Norbäck, D. (2015). Personal and demographic factors and change of subjective indoor air quality reported by school children in relation to exposure at Swedish schools: a 2-year longitudinal study. Sci Total Environ., 508, 288–96.

  • Wargocki, P., Da Silva, N. A. F. (2015). Use of visual CO2 feedback as a retrofit solution for improving classroom air quality. Indoor Air, 25(1), 105–114.

  • Wargocki, P., Seppänen, O. (Eds.). (2006). Indoor climate and productivity in offices. REHVA Guide book, No. 6. Brussels: Federation of European Heating, Ventilation and Air-conditioning Associations.

  • Wargocki, P., Wyon, D. P., Baik, Y. K., Clausen, G., Fanger, P. O. (1999). Perceived air quality, sick building syndrome (SBS) symptoms and productivity in an office with two different pollution loads. Indoor Air, 9(3).

  • Wargocki, P., Wyon, D. P., Sundell, J., Clausen, G., Fanger, P. O., (2000). The effects of outdoor air supply rate in an office on perceived air quality, sick building syndrome (SBS) symptoms and productivity. Indoor Air, 10(4), 222–236.

  • Wolkoff, P. (2013). Indoor air pollutants in office environments: Assessment of comfort, health, and performance. Int. J. Hyg. Environ. Health, 216(4), 371–394.

  • Zabiegała, B. (2009). Jakość powietrza wewnętrznego – Lotne związki organiczne jako wskaźnik jakości powietrza wewnętrznego, Monogr. Kom. Inżynierii Środowiska PAN, 59(2), 303–315.


Journal + Issues