Authors present a short review of selected natural-origin zeolite materials. This article discusses the structure, classification and ability to modify natural zeolites, along with examples of their potential applications as adsorbents or catalysts.
Ackley, M.W., Yang, R.T. (1991). Diffusion in ion-exchanged clinoptilolites, AIChE Journal, 11, 1645–1656. https://doi.org/10.1002/aic.690371107
Armbruster, T. (2001). Clinoptilolite-heulandite: applications and basic research. Studies in Surface Science and Catalysis, 135, 13–27. https://doi.org/10.1016/S0167-2991(01)81183-6
Armor, J.N. (2011). A history of industrial catalysis, Catalysis Today, 163, 3–9. https://doi.org/10.1016/j.cattod.2009.11.019
Atta, A.Y., Jibril, B.Y., Aderemi, B.O., Adefila, S.S. (2012). Preparation of analcime from local kaolin and rice husk ash. Applied Clay Science, 61, 8–13. https://doi.org/10.1016/j.clay.2012.02.018
Aysan, H., Edebali, S., Ozdemir, C., Karakaya, M.C., Karakaya, N. (2016). Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye. Microporous and Mesoporous Materials, 235, 78–86. https://doi.org/10.1016/j.micromeso.2016.08.007
Azizi, S.N., Ehsani, Tilami S. (2013). Framework-incorporated Mn and Co analcime zeolites: Synthesis and characterization. Journal of Solid State Chemistry, 198, 138–142. https://doi.org/10.1016/j.jssc.2012.10.001
Azizi 1, S.N., Ehsani, Tilami S. (2013). Cu-modified analcime as a catalyst for oxidation of benzyl alcohol: Experimental and theoretical. Microporous and Mesoporous Materials, 167, 89–93. https://doi.org/10.1016/j.micromeso.2012.03.034
Bampaiti, A., Misaelides, P., Noli, F. (2015). Uranium removal from aqueous solutions using a raw and HDTMA-modified phillipsite-bearing tuff, J. Radioanal. Nucl. Chem., 303, 2233. https://doi.org/10.1007/s10967-014-3796-4
Bejar A., Chaabene S.B., Jaber M., Lambert J.F., Bergaoui F. (2014). Mnanalcime: synthesis, characterization and application to cyclohexene oxidation. Microporous and Mesoporous Materials, 196, 158–164. https://doi.org/10.1016/j.micromeso.2014.05.004
Čejka, J., Peréz-Pariente, J., Roth, W.J. (2008). Zeolites: From Model Materials to Industrial Catalysts. Transworld Research Network, 357–389.
Chmielewská-Horváthová, E., Konečný, J., Bošan, Z. (1992). Ammonia Removal from Tannery Wastewaters by Selective Ion Exchange on Slovak Clinoptilolite. Acta hydrochim. hydrobiol., 20, 269–272. https://doi.org/10.1016/S0043-1354(02)00571-7
Christidis, G.E., Moraetis, D., Keheyanb, E., Akhalbedashvili, L., Kekelidzec N., Gevorkyand R., Yeritsyane H., Sargsyan H. (2003). Chemical and thermal modification of natural HEU-type zeolitic materials from Armenia, Georgia and Greece. Applied Clay Science, 24, 79–91. https://doi.org/10.1016/S0169-1317(03)00150-9
Coombs, D.S., Ellis, A.J., Fyfe, W.S., Taylor, A.M. (1959). The zeoIite facies, with comments on the interpretation of hydrothermal syntheses. Geochimica et Cosmochimica Acta, 17, 53–107. https://doi.org/10.1016/0016-7037(59)90079-1
Corma A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216, 298–312. https://doi.org/10.1016/S0021-9517(02)00132-X
Covarrubias, C., García, R., Arriagada, R., Yánez, J., Garland, M.T. (2006). Cr(III) exchange on zeolites obtained from kaolin and natural mordenite. Microporous and Mesoporous Materials, 88, 220–231. https://doi.org/10.1016/j.micromeso.2005.09.007
Cundy, C.S., Cox, P.A. (2003). The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chem. Rev.,103, 663–701. https://doi.org/10.1021/cr020060i
Czekaj, I., Sobuś, N. (2018a). Concepts of modern Technologies of obtaining valuable biomass-derived chemicals. Technical Transactions, 8, 35–58. https://doi.org/10.4467/2353737XCT.18.114.8889
Czekaj, I., Sobuś, N. (2018b). Vibrational Structure of Selected Compounds Derived from Biomass: Lignin Dimers, Selected Aldopentoses and Aldohexoses. Journal of Chemistry and Chemical Engineering, 12, 11–19. https://doi.org/10.17265/1934-7375/2018.01.002
Czekaj, I., Sobuś, N. (2018c). Nano-design of zeolite-based catalysts for selective conversion of biomass into chemicals, Wydawnictwo PK, Kraków 2018. https://repozytorium.biblos.pk.edu.pl/resources/42981
Ćurković, L., Cerjan-Stefanović, Š., Filipan, T. (1997). Metal ion exchange by natural and modified zeolites. Water Research, 31, 1379–1382. https://doi.org/10.1016/S0043-1354(96)00411-3
Dallas Swift, T., Nguyen, H., Erdman, Z., Kruger, J.S., Nikolakis, V., Vlachos, D.G. (2016). Tandem Lewis acid/Brønsted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural using zeolite beta. Journal of Catalysis, 333, 149–161. https://doi.org/10.1016/j.jcat.2015.10.009
Dapsens, P.Y., Mondelli, C., Perez-Ramirez, J. (2015). Design of Lewis-acid centres in zeolitic matrices for the conversion of renewable. Chem. Soc. Rev., 44, 7025–7043. https://doi.org/10.1039/C5CS00028A
Davis, R.J. (2003). New perspectives on basic zeolites as catalysts and catalyst supports. Journal of Catalysis, 216, 396–405. https://doi.org/10.1016/S0021-9517(02)00034-9
Dwyer, F.G., Degnan, T.F. (1993). Shape Selectivity in Catalytic Cracking. Studies in Surface Science and Catalysis, 76, 499–530. https://doi.org/10.1016/S0167-2991(08)63836-7
Ennaert, T., Van Aelst, J., Dijkmans, J., De Clercq, R., Schutyser, W., Dusselier, M., Verboekend, D., Sels B.F. (2016). Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev., 45, 584-611. https://doi.org/10.1039/C5CS00859J
Eprikashvili, L., Zautashvili, M., Kordzakhia, T., Pirtskhalava, N., Dzagania, M., Rubashvili, I., Tsitsishvili, V. (2016). Intensification of bioproductivity of agricultural cultures by adding natural zeolites and brown coals into soils. Annals of Agrarian Science, 14, 67–71. https://doi.org/10.1016/j.aasci.2016.05.004
Favvas, E.P., Tsanaktsidis, C.G., Sapalidis, A.A., Tzilantonis, G.T., Papageorgiou, S.K., Mitropoulos, A.Ch. (2016). Clinoptilolite, a natural zeolite material: Structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels. Microporous and Mesoporous Materials, 225, 385–391. https://doi.org/10.1016/j.micromeso.2016.01.021
Figueroa-Torres, G.M., Certucha-Barragán, M.T., Acedo-Félix, E., Monge-Amaya, O., Almendariz-Tapia, F.J., Gasca-Estefanía, L.A. (2016). Kinetic studies of heavy metals biosorption by acidogenic biomass immobilized in clinoptilolite. Journal of the Taiwan Institute of Chemical Engineers, 61, 241–246. https://doi.org/10.1016/j.jtice.2015.12.018
Flanigen E.M. (2001). Zeolites and molecular sieves: An historical perspective. Studies in Surface Science and Catalysis, 137, 11–35. https://doi.org/10.1016/S0167-2991(01)80243-3
Fukui, K., Arai, K., Kanayama, K., Yoshida, H. (2006). Phillipsite synthesis from fly ash prepared by hydrothermal treatment with microwave heating. Advanced Powder Technol., 17, 369–382. https://doi.org/10.1163/156855206777866164
García, J.E., González, M.M., Notario, J.S. (1993). Phenol adsorption on natural phillipsite. Reactive Polymers, 21, 171–176. https://doi.org/10.1016/0923-1137(93)90119-Z
García Hernández, J.E., Diaz Diaz, R., Notario del Pint, J.S., González Martin, M.M.(1994). NH4 + - Na+ -exchange and NH4+-release studies in natural phillipsite. Applied Clay Science 9/1994, 129–137. https://doi.org/10.1016/0169-1317(94)90032-9
Garcia-Basabe, Y., Rodriguez-Iznaga, I., de Menorval, L.Ch., Llewellyn, P., Maurin, G., Lewis, D.W., Binions, R., Autie, M., Ruiz-Salvador, A.R. (2010). Step-wise dealumination of natural clinoptilolite: Structural and physicochemical characterization. Microporous and Mesoporous Materials, 135, 187–196. https://doi.org/10.1016/j.micromeso.2010.07.008
Garcia-Martinez, J., Li, K. (2015). Mesoporous Zeolites Preparation. Characterization and Applications, Wiley-VCH.
Gatta, G.D., Cappelletti, P., Rotiroti, N., Slebodnick, C., Rinaldi, R. (2009). New insights into the crystal structure and crystal chemistry of the zeolite phillipsite. American Mineralogist, 94, 190–199. https://doi.org/10.2138/am.2009.3032
Gatta, G.D., Lotti, P. (2019). Systematics, crystal structures, and occurrences of zeolites. Modified Clay and Zeolite Nanocomposite Materials. Environmental and Pharmaceutical Applications. Micro and Nano Technologies, 1–25. https://doi.org/10.1016/B978-0-12-814617-0.00001-3
Ghobarkar, H., Schӓf, O., Massiani, Y., Knauth, P. (2003). The Reconstruction of Natural Zeolites. Springer Science+Business Media Dordrecht 2003.
Grce, M., Pavelić, K. (2005). Antiviral properties of clinoptilolite. Microporous and Mesoporous Materials, 79, 165–169. https://doi.org/10.1016/j.micromeso.2004.10.039
Grzybowska-Świerkosz, B. (1993). Elementy katalizy heterogenicznej. Warszawa: Wydawnictwo Naukowe PWN.
Gualtieri, A.F., Passaglia, E., Galli, E. (2002). Ion exchange selectivity of phillipsite. Studies in Surface Science and Catalysis, 142, 1705–1712. https://doi.org/10.1016/S0167-2991(02)80343-3
Handke, M. (2005). Krystalochemia krzemianów. Kraków: Wydawnictwo AGH.
Harikishore, K. R. D., Vijayaraghavan, K., Kim, J.A., Yeoung-Sang, Y. (2017) Valorisation of post-sorption materials: Opportunities, strategies, and challenges, Advances in Colloid and Interface Science, 242, 35–58. https://doi.org/10.1016/j.cis.2016.12.002
Hedström, A., (2001). Ion Exchange of Ammonium in Zeolites: A Literature Review. Journal of Environmental Engineering, 127, 673–681. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:8(673)
Hincapie B.O., Garces L.J., Zhang Q., Sacco A., Suib S.L. (2004). Synthesis of mordenite nanocrystals. Microporous and Mesoporous Materials, 67, 19–26. https://doi.org/10.1016/j.micromeso.2003.09.026
Inglezakis V.J., Hadjiandreou, K.J., Loizidou, M.D., Grigoropoulou, H.P. (2001). Pretreatment of natural clinoptilolite in a laboratory-scale ion exchange packed bed, Wat. Res., 9, 2161–2166. https://doi.org/10.1016/S0043-1354(00)00500-5
http://iza-structure.org [access: 30.04.2020]
Jha, V.K., Hayashi, S., (2009). Modification on natural clinoptilolite zeolite for its NH4+ retention capacity. Journal of Hazardous Materials, 169, 29–35. https://doi.org/10.1016/j.jhazmat.2009.03.052
Karadag, D., Akgul, E., Tok, S., Erturk, F., Kaya, M.A., Turan, M. (2007). Basic and Reactive Dye Removal Using Natural and Modified Zeolites. Journal of Chemical and Engineering Data, 52, 2436–2441. https://doi.org/10.1021/je7003726
Kesraoui-Ouki, S., Cheeseman, C.R., Perry R. (1994). Natural Zeolite Utilisation in Pollution Control: A Review of Applications to Metals’ Effluents. J. Chem. Tech. Biorechnol., 59, 121–126. https://doi.org/10.1002/jctb.280590202
Kim, D. (2018). Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review. Molecules, 23, 309, 1-21. https://doi.org/10.3390/molecules23020309
Kol’tsova T.N. (2007). Crystal Structures of Zeolites with the General Formula CaAl2Si4O12 · nH2O. Inorganic Materials, 2, 176–184. https://doi.org/10.1134/S0020168507060180
Korkuna, O., Leboda, R., Skubiszewska-Zięba, J., Vrublevs’ka, T., Gun’ko, V.M., Ryczkowski, J. (2006). Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous and Mesoporous Materials, 87, 243–254. https://doi.org/10.1016/j.micromeso.2005.08.002
Kulprathipanja, S. (2010). Zeolites in Industrial Separation and Catalysis, WILEY-VCH Verlag GmbH & Co.KGaA, 2010.
Lia Q., Liu D., Song L., Houd X., Wua C., Yan Z. (2018). Efficient hydro-liquefaction of woody biomass over ionic liquid nickel based catalyst. Industrial Crops & Products, 113, 157–166. https://doi.org/10.1016/j.indcrop.2018.01.033
Liebau, F. (1983). Zeolites and clathrasils - two distinct classes of framework silicates, Zeolites, 3, 191-193. https://doi.org/10.1016/0144-2449(83)90003-9
Mahdi, H.I., Irawan, E., Nuryoto, N., Jayanudin, J., Sulistyo, H., Sediawan, W.B., Muraza, O. (2016). Glycerol carbonate production from biodiesel waste over modified natural clinoptilolite. Waste Biomass Valor, 7, 1349–1356. https://doi.org/10.1007/s12649-016-9495-3
Majdan, M., Pikus, S., Rzączyńska, Z., Iwan, M., Maryuk, O., Kwiatkowski, R., Skrzypek, H. (2006). Characteristics of chabazite modified by hexadecyltrimethylammonium bromide and of its affinity toward chromates. Journal of Molecular Structure, 791, 53–60. https://doi.org/10.1016/j.molstruc.2005.12.043
Malekian, R., Abedi-Koupai, J., Eslamian, S.S. (2011). Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. Journal of Hazardous Materials 185, 970–976. https://doi.org/10.1016/j.jhazmat.2010.09.114
Marakatti, V.S., Halgeri, A.B. (2015). Metal ion-exchanged zeolites as highly active solid acid catalysts for the green synthesis of glycerol carbonate from glycerol, RSC Adv., 5, 14286–14293. https://doi.org/10.1039/C4RA16052E
Masters, A.F., Maschmeyer, T. (2011). Zeolites–From curiosity to cornerstone. Microporous and Mesoporous Materials, 142, 423–438. https://doi.org/10.1016/j.micromeso.2010.12.026
Mess, F., Stoops, G., Van Ranst, E., Paepe, R., Van Overloop, E. (2005). The nature of zeolite occurrences in deposits of the Olduvai Basin, Northern Tanzania. Clays and Clay Minerals, 6, 659–673. http://hdl.handle.net/1854/LU-412857
Mintova, S., Barrier, N., (2016). Syntheses of Zeolitic Materials Third Revised Edition, Published on behalf of the Synthesis Commission of the International Zeolite Association 2016.
Montagna, G., Bigi, S., Kónya, P., Szakáll, S., Vezzalini, G. (2010). Chabazite-Mg: a new natural zeolite of the chabazite series. American Mineralogist, 95, 939–945. https://doi.org/10.2138/am.2010.3449
Mumpton, F.A. (1977). Mineralogy and Geology of Natural Zeolites, Reviews in Mineralogy & Geochemistry, 4, New York.
Park, M., Choi, J. (1995). Synthesis of phillipsite from fly ash. Clay Science, 9, 219–229. https://doi.org/10.1163/156855206777866164
Pavlovic, J., Popova, M., Mihalyi, R.M., Mazaj, M., Mali, G., J. Kovač, J., H. Lazarova, H., Rajic, N. (2019). Catalytic activity of SnO2- and SO4/SnO2-containing clinoptilolite in the esterification of levulinic acid. Microporous and Mesoporous Materials, 279, 10–18. https://doi.org/10.1016/j.micromeso.2018.12.009
Primo, A., Garcia, H. (2014). Zeolites as catalysts in oil refining. Chem. Soc. Rev., 43, 7548–7561. https://doi.org/10.1039/C3CS60394F
Ragnarsdóttir K.V. (1993). Dissolution kinetics of heulandite at pH 2-12 and 25°C. Geochimica et Cosmochimica Acta, 57, 2439–2449. https://doi.org/10.1016/0016-7037(93)90408-O
Ramachandran, C.E., Williams, B.A., van Bokhoven, J.A., Miller, J.T. (2005). Observation of a compensation relation for n-hexane adsorption in zeolites with different structures: implications for catalytic activity. Journal of Catalysis, 233, 100–108. https://doi.org/10.1016/j.jcat.2005.04.017
Reháková, M., Čuvanová, S., Dzivák, M., Rimár, J., Gaval’ová, Z. (2004). Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Current Opinion in Solid State and Materials Science, 8, 397–404. https://doi.org/10.1016/j.cossms.2005.04.004
Rinaldi, R., Schüth, F. (2009). Design of solid catalysts for the conversion of biomass. Energy Environ. Sci., 2, 610–626. https://doi.org/10.1039/B902668A
Rujiwatra, A. (2004). A selective preparation of phillipsite and sodalite from perlite. Materials Letters, 58, 2012–2015. https://doi.org/10.1016/j.matlet.2003.12.015
Sanhueza, V., Kelm, U., Cid, R. (2002). Synthesis of mordenite from diatomite: a case of zeolite synthesis from natural material. J. Chem. Technol Biotechnol., 78, 485-488. https://doi.org/10.1002/jctb.801
Sani, A., Cruciani, G., Gualtieri, A.F. (2002). Dehydration dynamics of Baphillipsite: an in situ synchrotron powder diffraction study. Phys Chem Minerals, 29, 351–361. https://doi.org/10.1007/s00269-002-0247-5
Sarioglu M. (2005). Removal of ammonium from municipal wastewater using natural Turkish (Dogantepe) zeolite. Separation and Purification Technology, 41, 1–11. https://doi.org/10.1016/j.seppur.2004.03.008
Serri, C., de Gennaro, B., Catalanotti, L., Cappelletti, P., Langella, A., Mercurio, M., Mayol, L., Biondi, M. (2016). Surfactant-modified phillipsite and chabazite as novel excipients for pharmaceutical applications?, Microporous and Mesoporous Materials, 224, 143–148. https://doi.org/10.1016/j.micromeso.2015.11.023
Smit, B., Maesen, T.L.M. (2008). Towards a molecular understanding of shape selectivity. Nature, 451, 671–678. https://doi.org/10.1038/nature06552
Stephenson, D.J., Fairchild, C.I., Buchan, R.M., Dakins, M.E. (1999). A Fiber Characterization of the Natural Zeolite, Mordenite: A Potential Inhalation Health Hazard, Aerosol Science and Technology, 30, 467–476. https://doi.org/10.1080/027868299304507
Sun, Z., Barta, K. (2018). Cleave and couple: toward fully sustainable catalytic conversion of lignocellulose to value added building blocks and fuels. Chem. Commun., 54, 7725–7745. https://doi.org/10.1039/C8CC02937G
Van Meerbeeka, K., Muysa, B., Hermy, M. (2019). Lignocellulosic biomass for bioenergy beyond intensive cropland and forests. Renewable and Sustainable Energy Reviews, 102, 139–149. https://doi.org/10.1016/j.rser.2018.12.009
Wanga, S., Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156, 11–24. https://doi.org/10.1016/j.cej.2009.10.029
Watson, G.C., Jensen, N.K., Rufford, T.E., Chan, I., May, E.F. (2012). Volumetric Adsorption Measurements of N2, CO2, CH4, and a CO2 + CH4 Mixture on a Natural Chabazite from (5 to 3000) kPa. J. Chem. Eng. Data, 57, 93–101. https://doi.org/10.1021/je200812y
Weitkamp, J., Puppe, L. (1999). Catalysis and Zeolites: Fundamentals and Applications. Berlin Heidelberg: Springer-Verlag.
Xiea, Y., Sua, Y., Wanga, P., Zhang, S., Xiong, Y. (2018). In-situ catalytic conversion of tar from biomass gasification over carbon nanofibers-supported Fe-Ni bimetallic catalysts. Fuel Processing Technology, 182, 77–87. https://doi.org/10.1016/j.fuproc.2018.10.019
Xu, R., Pang, W., Yu, J., Huo, Q., Chen, J. (2007). Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Singapore: John Wiley & Sons.
Yakubovich, O.V., Massa, W., Gavrilenko, P.G., Pekov, I.V. (2005). Crystal Structure of Chabazite K. Crystallography Reports, 4, 544–553. https://doi.org/10.1134/1.1996728
Yilmaz, B., Műller, U. (2009). Catalytic Applications of Zeolites in Chemical Industry. Topics Catal., 52, 888–895. https://doi.org/10.1007/s11244-009-9226-0
Yokomori, Y., Idaka, S. (1998). The crystal structure of analcime. Microporous and Mesoporous Materials, 21, 1998, 365–370. https://doi.org/10.1016/S1387-1811(98)00019-5
Zhou, L., Boyd, C. E. (2014). Total ammonia nitrogen removal from aqueous solutions by the natural zeolite, mordenite: A laboratory test and experimental study. Aquaculture, 432, 252–257. https://doi.org/10.1016/j.aquaculture.2014.05.019