The zero-sum constant, the Davenport constant and their analogues

  • 1 Department of Applied Mathematics, Faculty of Computer Science and Telecommunications, Cracow University of Technology

Abstract

Let D(G) be the Davenport constant of a finite Abelian group G. For a positive integer m (the case m = 1, is the classical case) let Em(G) (or ηm(G)) be the least positive integer t such that every sequence of length t in G contains m disjoint zero-sum sequences, each of length |G| (or of length ≤ exp(G), respectively). In this paper, we prove that if G is an Abelian group, then Em(G) = D(G) – 1 + m|G|, which generalizes Gao’s relation. Moreover, we examine the asymptotic behaviour of the sequences (Em(G))m≥1 and (ηm(G))m≥1. We prove a generalization of Kemnitz’s conjecture. The paper also contains a result of independent interest, which is a stronger version of a result by Ch. Delorme, O. Ordaz, D. Quiroz. At the end, we apply the Davenport constant to smooth numbers and make a natural conjecture in the non-Abelian case.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alford, W.R., Granville, A. and Pomerance, C. (1994). There are infinitely many Carmichael numbers. Annals of Math., 140(3), 703–722.

  • Alon, N. and Dubiner, M. (1995). A lattice point problem and additive number theory. Combinatorica, 15, 301–309.

  • Balasubramanian, R., Bhowmik, G. (2006). Upper Bounds for the Davenport Constant. Retrieved from https://hal.atchives-ouvertes.fr/hal-00016890/document (date of access: 2020/04/21).

  • Bass, J. (2007). Improving the Erdös-Ginzburg-Ziv theorem for some non-abelian groups. J. Number Theory, 126, 217–236.

  • Caro, Y. (1996). Remarks on a zero-sum theorem. J. Comb. Theory, Ser. A, 76, 315–322.

  • Chintamani, M.N., Moriya, B.K., Gao, W.D., Paul, P., and Thangadurai, R. (2012). New upper bounds for the Davenport and the Erdös-Ginzburg-Ziv constants. Archiv der Mathematik., 98(2), 133–142.

  • Delorme, Ch., Ordaz, O., Quiroz, D. (2001). Some remarks on Davenport constant. Discrete Math., 237, 119–128.

  • Dimitrov, V. (2007). Zero-sum problems in finite groups, under the direction of Pavlo Pylyavskyy, MIT. Retrieved from https://web.mit.edu/rsi/www/pdfs/papers/2003/2003-vessel.pdf (date of access: 2020/04/21).

  • Edel, Y., Elsholtz, Ch., Geroldinger, A., Kubertin, S., Rackham, L. (2007). Zero-sum problems in finite abelian groups and affine caps. Quart. J. Math., 58, 159–186.

  • Fan, Y., Gao, W.D., Zhong, Q. (2011). On the Erdös-Ginzburg-Ziv constant of finite abelian groups of high rank. J. Number Theory, 131, 1864–1874.

  • Freeze, M., Schmid, W.A. (2010). Remarks on a generalization of the Davenport constant. Discrete Math, 310, 3373–3389.

  • Gao, W.D. (1994). Some problems in additive group theory and additive number theory (Thesis). Chengdu: Sichuan University.

  • Gao, W.D. (1995). A combinatorial problem on finite groups. Acta Math. SINCA, 38, 395–399.

  • Gao, W.D. (1996). A Combinatorial Problem on Finite abelian Groups. J. Number Theory, 58, 100–103.

  • Gao, W.D., Geroldinger, A. (2006). Zero-sum problems in finite abelian groups: a survey. Expo. Math., 24, 337–369.

  • Geroldinger, A., Halter-Koch, F. (2006). Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics, 278. Boca Raton: Chapman & Hall/CRC.

  • Geroldinger, A., Schneider, R. (1992). On Davenport’s constant. Journal of Combinatorial Theory, Series A, 61(1), 147–152.

  • Geroldinger, A., Ruzsa, I. (2009). Combinatorial Number Theory and Additive Group Theory. Advanced Courses in Mathematics CRM Barcelona. Basel: Birkhäuser.

  • Girard, B. (2018). An asymptotically tight bound for the Davenport constant. J. Ec. Polytech. Math., 5, 605–611.

  • Girard, B., Schmid, W.A. (2019). Direct zero-sum problems for certain groups of rank three. J. Number Theory, 197, 297–316.

  • Grynkiewich, D.J. (2013). Structural Additive Theory. Developments in Mathematics 30. Cham: Springer.

  • Halter-Koch, F. (1992). A generalization of Davenport’s constant and its arithmetical applications. Colloq. Math., 63(2), 203–210.

  • Han, D. (2015). The Erdös-Ginzburg-Ziv Theorem for finite nilpotent groups. Archiv Math., 104, 325–322.

  • Han, D., Zhang, H. (2019). The Erdös-Ginzburg-Ziv Theorem and Noether number for C m⋉ϕC mn. J. Number Theory, 198, 159–175.

  • Hamidoune, Y. (1996). On weighted sums in abelian groups. Discrete Math., 162, 127–132.

  • Harborth, H. (1973). Ein Extremalproblem für Gitterpunkte. J. Reine Angew. Math., 262, 356–360.

  • Oh, J.S. and Zhong, Q. (2019). On Erdös-Ginzburg-Ziv inverse theorems for Dihedral and Dicyclic groups, to appear in the Israel Journal of Mathematics. Retrieved from https://arxiv.org/abs/1904.13171 (date of access: 2020/04/21).

  • Olson, J.E. (1969a). A combinatorial problem on finite abelian groups I. J. Number Theory 1, 8–10.

  • Olson, J.E. (1969b). A combinatorial problem on finite abelian groups II. J. Number Theory 1, 195–199.

  • Reiher, Ch. (2007). On Kemnitz’s conjecture concerning lattice-points in the plane. The Ramanujan Journal., 13, 333–337.

  • Rogers, K. (1963). A combinatorial problem in abelian groups. Proc. Cambridge Philos. Soc., 59, 559–562.

  • Schmid, W.A. (2011). The inverse problem associated to the Davenport constant for C 2C 2C 2 n, and applications to the arithmetical characterization of class groups. Electron. J. Combin., 18(1), 1–42.

  • Sheikh, A. (2017). The Davenport Constant of Finite Abelian Groups (Thesis). London: University of London.

OPEN ACCESS

Journal + Issues

Search