The verification of a piezoelectric vibration-suppression system with a multimode basic RLC shunt circuit and its comparison to a multi-mode current-flowing shunt circuit

  • 1 Department of Automatic Control and Information Technology, Faculty of Electrical and Computer Engineering, Cracow University of Technology

Abstract

One of the modern methods of reducing vibrations of plates and beams is using piezoelectric materials in the form of distributed elements or patches (applied in a passive or an active system). However, for the multimodal response of a structure, there is no possibility to place the actuators in exactly the areas with maximum curvature values for each mode. Additionally, in the case of passive multimodal suppression systems – in which energy is needed to be supplied to the system – there is the necessity to create a complicated electrical circuit. The particular electrical shunts of the circuit are tuned to the specific vibration forms which require damping. The main objective of this article is to show the possibility of creating a multimodal vibration suppression system with typical resonant shunts and proposed second slightly modified.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ahmadian, M., Jeric, K. M. (2001). On the application of shunted piezoceramics for increasing acoustic transmission loss in structures. J. Sound Vib., 243(2), 347–359.

  • Batra, R. C., Dell’Isola, F., Vidoli, S., Vigilante, D. (2005). Multimode vibration suppression with passive two-terminal distributed network incorporating piezoceramic transducers. Int. J. Solids Struct., 42(11–12), 3115–3132.

  • Behrens, S., Moheimani, O. R., Fleming, A. J. (2003). Multiple mode current flowing passive piezoelectric shunt controller. J. Sound Vib., 266(5), 929–942.

  • Berardengo, M., Manzoni, S., Conti, A. M. (2017). Multi-mode passive piezoelectric shunt damping by means of matrix inequalities. J. Sound Vib., 405, 287–305.

  • Goldstein, A. L. (2011). Self-Tuning multimodal piezoelectric shunt damping. J. Brazilian Soc. Mech. Sci. Eng., 33(4), 428–436.

  • Granier, J. J., Hundhausen, R. J., Gaytan, G. E. (2002). Passive modal damping with piezoelectric shunts. Proc. SPIE, 1, 583–589.

  • Hagood, N. W., Von Flotow, A. (1991). Damping of structural vibrations with piezoelectric materials and passive electrical networks, J. Sound Vib., 146(2), 243–268.

  • Hansen, S. S. D. (2013). Active control of noise and vibration, second edition. Boca Racon: CRC Press Book.

  • Hollkamp, J. J. (1994). Multimodal passive vibration suppression with piezoelectric materials and resonant shunts. J. Intell. Mater. Syst. Struct., 49–57.

  • Khorshidi, K., Rezaei, E., Ghadimi, A. A., Pagoli, M. (2015). Active vibration control of circular plates coupled with piezoelectric layers excited by plane sound wave. Appl. Math. Model., 39(3–4), 1217–1228.

  • Kozień, M. S., Koltowski, B. (2011). Comparison of active and passive damping of plate vibration by piezoelectric actuators – FEM Simulation. Acta Phys. Pol. Ser. a, 119(6), 1005–1008.

  • Kozień, M. S., Ścisło, Ł. (2015). Simulation of control algorithm for active reduction of transversal vibrations of beams by piezoelectric elements based on identification of bending moment. Acta Phys. Pol. A, 128(1A), A-56-A-61.

  • Kozień, M. S., Wiciak, J. (2010). Passive structural acoustic control of the smart plate – FEM simulation. Acta Phys. Pol. A, 118(6), 1186–1188.

  • Lossouarn, B., Aucejo, M., Deü, J. F., Multon, B. (2017). Design of inductors with high inductance values for resonant piezoelectric damping. Sensors Actuators, A Phys., 259, 68–76.

  • Moheimani, S. O. R., Fleming, A. J. (2006). Piezoelectric transducers for vibration control and damping. Berlin–Heidelberg: Springer Science & Business Media.

  • Ścisło, Ł., Kozień, M. S. (2010). FEM analysis of a beam for piezolectric passive vibration control system. Czasopismo Techniczne, 2-M, 247–254.

  • Ścisło, Ł., Kozień, M. S. (2011). Transient analysis of the vibrating beam with PZT elements using finite element method, Czasopismo Techniczne, 1-M, 75–81.

  • Ścisło, Ł., Kozień, M. S. (2014). Analytical and numerical solutions for simulations of multimodal vibration reduction using piezoelectric elements. In ICSV20: 20th International Congress on Sound & Vibration (pp. 13–17). Bangkok: ICSV.

  • Ścisło, Ł., Kozień, M. S. (2018). Experimental verification of a control algorithm based on measurement of bending moment by the strain measurement method used for active reduction of transversal vibrations of beams by piezoelectric elements. In ICSV25: 25th International Congress on Sound & Vibration (pp. 882–890). Hiroshima: ICSV.

  • Wiciak, J. (2008). Wybrane zagadnienia redukcji drgań i dźwięków strukturalnych, Kraków: AGH.

  • Yi, S., Ling, S. F., Ying, M. (2000). Large deformation finite element analyses of composite structures integrated with piezoelectric sensors and actuators. Finite Elem. Anal. Des., 35(1), 1–15.

  • Żołopa, E., Brański, A. (2014). Analytical determination of optimal actuators position for single mode active reduction of fixed-free beam vibration using the linear quadratic problem idea. Acta Phys. Pol. A, 125(4A), A-155-A-158.

OPEN ACCESS

Journal + Issues

Search