Mathematical Models and Computer Simulations of Aerial Spraying and Droplets Distribution in a Target Site

Open access

Abstract

Mathematical models describing aerial spraying and the distribution of liquid droplets on a target were presented. Relationships based on “free models” with Gaussian distribution of droplet concentrations and “bound models” that account for the impact of disturbances in the velocity field behind agricultural aircraft were expanded, and the hybrid model too. The results of experimental studies were presented and compared with theoretical calculations. The “bound model” was found to be the most effective solution for describing the physical phenomena that accompany the aerial spraying process.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Ashley H. Landahl M.T. 1965. Aerodynamics of Wing and Bodies. Reading Addison-Wesley Publishing Co.

  • [2] Atias M. Weihs D. 1984. Motion of Aircraft Trailing Vortices Near the Ground. Journal of Aircraft. 21 (10): p. 783-786.

  • [3] Bache D.H. Sayer W.J.D. 1975. Transport of Aerial Spray. A Model of Aerial Dispersion. Agricultural Meteorology V. (15): p. 257-271.

  • [4] Beyer E.M. 1991. Crop Protection Meeting the Challenge. Proceeding Brighton Crop Protection Conference Weeds. 18-21 November Brighton: p. 3-22.

  • [5] Bilianin A.J. Teske M.E. Barry J.W. Ekblad R.B. 1989. The Aircraft Spray Dispersion Model. Code Development and Experimental Validation. AGDISP. ASAE V.32 (1): p. 327-334

  • [6] Boothroyd R.G. 1971. Flowing Gas-Solid Suspensions. London Chapman and Hall.

  • [7] Bragg M.B. 1986. A Numerical Simulation of the Dispersal of Liquids from Aircraft. Transaction of the ASAEV.29: p.10-15.

  • [8] Csanady G.T. 1973. Turbulent Diffusion in the Environment. D. Reidel Publishing Company. Dordrecht-Boston.

  • [9] Derevianko V.S. 1974. Vlijanie aerodynamiczeskich vozmuscenii na procesy aviacionnogo opylivanija i opryskivanija. Transport Moskwa.

  • [10] Elliot J.G. Wilson B.J. (Editors). 1983. The Influence of Weather on the Efficiency and Safety of Pesticide Application. Occ. Publ. No.3 BCPC. Rand D. Council.

  • [11] ESDU No. 72026. 1972. Characteristics of the Wind Speed in the Lower of the Atmosphere Near the Ground: Strong Winds (Neutral Atmosphere). London.

  • [12] Harvey J.K. Perry F.J. 1971. Flow Field Produced by Trailing Vortices in the Vicinity of Ground. AIAA Journal 9(8): p. 1659-1660.

  • [13] Leonard A. 1980. Vortex Methods for Slow Simulation. Journal of Computational Physics. 37: p. 289-335.

  • [14] Kamiński S. 1970. Analiza parametrów charakteryzujących rozpylanie ciekłych środków ochrony roślin. Sprawozdanie 4.31.15. Instytut Lotnictwa Warszawa.

  • [15] Kaul P. Meyer E. Gebauer S. 1995. Direkte abtrift von Pflanzenschutzmitteln-Flugzeug Nachrichtenbl. Deut. Pflanzenschutzd. 47(2): p. 36-44.

  • [16] Miranda L.R. Elliot R.D. Baker W.M. 1977. A Generalized Vortex Lattice Method for Subsonic and Supersonic Flow Applications. NASA CR 2865.

  • [17] Moore D.W. 1974. A Numerical Study of the Roll-up of a Finite Vortex Sheet. Journal of Fluid Mechanics 63(2): p. 225-235.

  • [18] Pietruszka J. Rowiński R.S. 2004. Computer Simulation of Aerial Spraying. Annual Review of Agricultural Engineering. 3(1): p.125-140.

  • [19] Ranz W.E. Marschall W.R. 1952. Evaporation from Drops. Chemical Engineering Progress. 48(3): 141-146 48(4): p.173-180.

  • [20] Reed W.H. 1954. An Analytical Study of the Effectof Airplane Wake on the Lateral Dispersion of Aerial Sprays. NACA Report 1196.

  • [21] Rowiński R.S. 1993. Problems of Spray Drift in Plant Protection Using Aviation Techniques. Acta Acad. Agricult. Techn. Olst. Aed et 16: p. 171-195.

  • [22] Rowiński R.S. 2009. Zabiegi lotnicze w ochronie lasu. (praca pod red. Prof. B. Głowackiej). Wyd. Centrum Informacyjne Lasów Państwowych. Warszawa: p. 9-48.

  • [23] Rowiński R.S. Ferenc M. 2000. Some Problems Concerned with the Theory of Drift. Annual Review of Agricultural Engineering. 2(1): p. 148-156.

  • [24] Rowiński R.S. Wodecka C. Jumrych M. 1985. Metodyka badań Rolniczych Statków Powietrznych. Wydawnictwo. ART Olsztyn. Olsztyn.

  • [25] Seredyn T. Rowiński R. 2014. Experimental Investigations of a drifting Cloud of Droplets Dispersed from Aircrafts. Archive of Mechanical Engineering V. LXI. Nr. 3. p. 393-407.

  • [26] Seredyn T. 2017. Weryfikacja formuł matematycznych opisujących proces ruchu kropel rozprzestrzenianych ze statku powietrznego. Wyd. Instytut Lotnictwa. Warszawa (Rozprawa doktorska).

  • [27] Soo S.L. 1971. Gidrodinamika mnogofaznych system. Izdatielstwo Mir. Moskawa. (Russian translation).

  • [28] Slade D.H. 1966. Summary Measurements of Dispersion from Quasi Instantaneous Sources. Nuclear Safety 7(2).

  • [29] Stenke W.E. Yates W.E. 1988. Modifying Gaussian Models to Obtain Improved Drift Prediction. Agricultural Engineering Department University of California Davis.

  • [30] Teske M.E Thistle H.W. Londergan R.J. 2011. Modification of Droplets Evaporation in the Symulation of Fine Droplet Motion using AGDISP. Tran. of ASAE 54(2) p. 417-421.

  • [31] Teske M.E. Thistle H.W. Schou W.C. Miller P.C.H. Strager J.M. Richardson B. Butler E.M.C. Barry J.W. Twardus D.B. Thompson D.G. 2011. A Review of Computer Models for pesticide Deposition Prediction. Trans. ASAE 54(3): p. 789-801.

  • [32] Trayford R.S. Welch L.W. 1977. Aerial Spraying.: A Simulation of Factors Influencing the Distributionand Recovery of Liquid Droplets. Journal of Agricultural Engineering Research Vol. 22: p. 183-196.

  • [33] Wickens R.H. 1977. Calculation of Wake Vortex Trajectories for Low Flying Spraying 2 Aircraft. National Aero Report LTR-LA-215 Nat. Res. Council. Canada.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 12
PDF Downloads 15 15 15