Modelling of the Aerospace Structure Demonstrator Subcomponent

Open access

Abstract

Carbon-epoxy composite materials, due to their high strength in relation to mass, are increasingly used in the construction of aircraft structures, however, they are susceptible to a number of damages. One of the most common is delamination, which is a serious problem in the context of safe operation of such structures. As part of the TEBUK project, the Institute of Aviation has developed a methodology for forecasting the propagation of delamination. In order to validate the proposed method, an aerial structure demonstrator, modelled on the horizontal stabilizer of the I-23 Manager aircraft, was carried out. However, in order to carry out the validation, it was necessary to "simplify" the demonstrator model. The paper presents a numerical analysis conducted in order to separate from the TEBUK demonstrator model a fragment of the structure, which was used to study the delamination area, as an equivalent of the whole demonstrator. Subcomponent selection was carried out in several stages, narrowing down the analysed area covering delamination in subsequent steps and verifying the compliance of specific parameters with the same parameters obtained in a full demonstrator model. The parameters compared were: energy release rate values on the delamination front line and strain values in the delamination area. The numerical analyses presented in the paper were performed with the use of the MSC.Marc/Mentat calculation package. As a result of the analyses, a fragment of the structure was selected, which allows to significantly reduce the time and labour consumption of the production of the studied object, as well as to facilitate experimental research.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Heslehurst R. B.2014 Defects and Damage in Composite Materials and Structures CRC Press.

  • [2] Deborah D.L.C. 2010 Composite Materials Science and Applications 2nd Edition Springer New York London.

  • [3] Barbero E.J. 2010 Introduction to composite material design Taylor & Francis.

  • [4] Epaarachchi J.A. Kahandawa G.C. 2016 Structural Health Monitoring Technologies and Next-Generation Smart Composite Structures CRC Press.

  • [5] Tomblin J. Seneviratne W. 2011 Determining the Fatigue Life of Composite Aircraft Structures Using Life and Load-Enhancement Factors Air Traffic Organization NextGen & Operations Planning Office of Research and Technology Development Washington DC 20591.

  • [6] Chlebus E. 2000 Techniki komputerowe CAx w inżynierii produkcji. Wydawnictwa Naukowo-Techniczne.

  • [7] Sarkar J. 2017 Computer Aided Design: A Conceptual Approach CRC Press.

  • [8] Rakowski G. Kacprzyk Z. 2005 Metoda elementów skończonych w mechanice konstrukcji Oficyna Wydawnicza Politechniki Warszawskiej Warszawa.

  • [9] Akin J.E. 1982 Application and the implementation of finite element methods Academic Press New York.

  • [10] Rugarli P. 2010 Structural Analysis with Finite Elements Thomas Telford.

  • [11] Krueger R. 2004 „Virtual crack closure technique: History approach and applications” Appl. Mech. 57(2) pp. 109–143.

  • [12] Dobrzański P. 2016 „Modelowanie strefy kohezyjnej” Prace Instytutu Lotnictwa 2(243). s. 170-186.

  • [13] Allix O. Ladeveze P. 1992 Interlaminar interface modelling for the prediction of delamination. Composite Structures 22(4):235-242 1992.

  • [14] Alfano G.Crisfield M.A. 2001 Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. International Journal for Numerical Methods in Engineering 50(7):1701-1736.

  • [15] 2014 „Marc user’s Manual Volume A: Theory and User Information”.

  • [16] Królikiewicz T. 2006 „Samoloty i śmigłowce Instytutu Lotnictwa. Samoloty dyspozycyjne. Ostatnie projekty.”. Lotnictwo nr 5.

  • [17] Wiśniowski W. 2014 "XX lat Programu Samolotów Lekkich I Bezpieczeństwa (PSLIB)" Prace Instytutu Lotnictwa 3(236). s. 7-25.

  • [18] Osmęda A. 2012 Analiza wytrzymałościowo-konstrukcyjna demonstratora Raport wewnętrzny 05/BU/2012/TEBUK Instytut Lotnictwa Warszawa.

  • [19] Osmęda A. 2016 “Porównanie wyników analiz numerycznych i prób wytrzymałościowych demonstratora struktury lotniczej” Prace Instytutu Lotnictwa 3(244). s. 123-134.

  • [20] Bajurko P. 2015 Modelowanie subkomponentu demonstratora TEBUK Raport wewnętrzny 68/LK/2015/TEBUK Instytut Lotnictwa Warszawa.

  • [21] Bajurko P. 2013 „Liniowa analiza wyboczeniowa demonstratora TEBUK” Raport wewnętrzny 12/BU/2013/TEBUK Instytut Lotnictwa Warszawa.

  • [22] Bajurko P. 2013 „Obliczeniowa analiza wytrzymałości statycznej demonstratora TEBUK” Raport wewnętrzny 17/BU/2013/TEBUK Instytut Lotnictwa Warszawa.

  • [23] 2014 „Marc user’s Manual Volume B: Element Library”

  • [24] Bajurko P. Wilk J. Szeląg D. and Czarnocki P. 2014 “Numerical modeling of delamination growth in composite plates” Shell Structures Theory and Applications CRS Press Gdańsk pp. 373–376.

  • [25] Bajurko P. and Czarnocki P. 2014 “Numerical and experimental investigations of embedded delamination growth caused by compressive loading” Journal of Theoretical and Applied Mechanics 52(2) pp. 301–312.

  • [26] Wilk J. 2015 “Assessing the hazard of delamination propagation in composites using numerical analysis” Composites Theory and Practice R. 15 nr 1 pp. 34–38.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 62 62 9
PDF Downloads 57 57 6