The Possibility of Ultraviolet Enceladus’ Observations from Stratospheric Balloons

Open access


Stratospheric balloons are very important sources for space and terrestrial observation experiments in many disciplines. Instruments developed for astrophysical measurements are usually reusable. It is also possible to observe both hemispheres including observations from the polar and equatorial regions for thirty days or even longer. On the other hand the UV atmospheric transmittance window was used for the astrophysical observations less often than visible optical bands. At the end of the 2017 there are a few scientific groups working on near-UV or UV spectrographs and cameras for balloon flights.

In this paper we are discussing the possibility of ultraviolet measurement of Enceladus, an icy Saturnian moon, surface reflectance between 200 and 400 nm from the 20-50 km altitudes. At visible and near infrared optical channels Enceladus’ reflectance is very high (near 1.0). This value is consistent with a surface composed of water ice, however at some ultraviolet wavelengths Enceladus reflectance is lower than it would be expected for this type of surface. The scientific research done in the last decade was focused on H2O, NH3, and tholin particles detection on the Enceladus’ surface as a reason of low UV reflectance phenomenon. Continuous observation of Enceladus’ UV reflectance variability from stratospheric balloons may be interesting and may give us the proof of the presence of biomarkers or/and tholin particles.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Judge P. 2017 “A novel strategy to seek biosignatures at Enceladus and Europa” Astrobiology 17(9) 852-861.

  • [2] Vollmer M. Klaus-Peter M. Ã. 2017 Infrared thermal imaging: fundamentals research and applications John Wiley & Sons.

  • [3] Carn S. A. Krotkov N. A. 2016 Volcanic Ash Elsevier Chap. 12.

  • [4] Becker T. M. Retherford K. D. Roth L. McGrath M. A. Saur J. Hendrix A. R. Raut U. 2016 “Far-UV Spectral and Spatial Analysis from HST Observations of Europa” AGU Fall Meeting Abstracts.

  • [5] Czapski P. Dorosz K. Kacprzak M. Korniluk T. Kotlarz J. Mazur A. Rotchimmel K. 2016 “Pozyskiwanie i przetwarzanie danych lotniczych i satelitarnych przez zespół badawczy Zakładu Teledetekcji Instytutu Lotnictwa” (Acquisition and processing of aerial and satellite data by a research team of the Remote Sensing Department in Institute of Aviation) Przegląd Geodezyjny 88(3) 4-9.

  • [6] Romualdez L. J. Benton S. J. Clark P. Damaren C. J. Eifler T. Fraisse A. A. Lipton L. 2016 “The design and development of a high-resolution visible-to-near-UV telescope for balloon-borne astronomy: SuperBIT”. arXiv preprint arXiv:1608.02502.

  • [7] Sreejith A. G. Mathew J. Sarpotdar M. Nirmal K. Ambily S. Prakash A. Murthy J. 2016 “Balloon UV experiments for astronomical and atmospheric observations” arXiv preprint arXiv:1608.06385.

  • [8] Ambily S. Mathew J. Sarpotdar M. Sreejith A. G. Nirmal K. Prakash A. Murthy J. 2016 “Near UV imager with an MCP-based photon counting detector” Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray Vol. 9905 p. 990539 International Society for Optics and Photonics.

  • [9] Danielson R. E. 1961 “The Structure of Sunspot Penumbras” The Astrophysical Journal 134 p. 275.

  • [10] Solanki S. K. Barthol P. Danilovic S. Feller A. Gandorfer A. Hirzberger J. del Toro Iniesta J. C. 2010 “SUNRISE: instrument mission data and first results” The Astrophysical Journal Letters 723(2) L127.

  • [11] Milliard B. Donas J. Laget M. 1991 “A 40-cm UV (2000 Å) balloon-borne imaging telescope: results and current work” Advances in Space Research 11(11) 135-138.

  • [12] Donas J. Deharveng J. M. Laget M. Milliard B. Huguenin D. 1987 “Ultraviolet observations and star-formation rate in galaxies” Astronomy and Astrophysics 180 12-26.

  • [13] Schwarzschild M. 1959 “Photographs of the Solar Granulation Taken from the Stratosphere” The Astrophysical Journal 130 345.

  • [14] Hansen C. J. Esposito L. W. Aye K. M. Colwell J. E. Hendrix A. R. Portyankina G. Shemansky D. 2017 “Investigation of diurnal variability of water vapor in Enceladus' plume by the Cassini ultraviolet imaging spectrograph” Geophysical Research Letters 44(2) 672-677.

  • [15] Hansen C. Esposito L. Colwell J. Hendrix A. Portyankina G. 2017 “Enceladus Plume Morphology and Variability from UVIS Measurements” AAS/Division for Planetary Sciences Meeting Abstracts Vol. 49.

  • [16] Teolis B. D. Perry M. E. Hansen C. J. Waite J. H. Porco C. C. Spencer J. R. Howett C. J. 2017 “Enceladus Plume Structure and Time Variability: Comparison of Cassini Observations” Astrobiology 17(9) 926-940.

  • [17] Hendrix A. R. Hansen C. J. Royer E. M. Cassidy T. A. Esposito L. W. Holsclaw G. M. 2017 “Enceladus: Using UV Data to Study Plume Fallout” Lunar and Planetary Science Conference Vol. 48.

  • [18] Scipioni F. Schenk P. Tosi F. D'Aversa E. Clark R. Combe J. P. Dalle Ore C. M. 2017 “Deciphering sub-micron ice particles on Enceladus surface” Icarus 290 183-200.

  • [19] Khare B. N. Sagan C. 1979 “Organic dust synthesized in reducing environments by ultraviolet radiation or electric discharge” Astrophysics and Space Science 65(2) 309-312.

  • [20] Neish C. D. Somogyi Á. Smith M. A. 2010 “Titan's primordial soup: formation of amino acids via low-temperature hydrolysis of tholins” Astrobiology 10(3) 337-347.

  • [21] Zalewska N. Kotlarz J. Kacprzak M. Korniluk T. 2017 „Detekcja biomarkerów w pióro-puszach gazowych za pomocą kamery wielospektralnej w projektowanej misji Enceladus Orbiter (NASA)” (“Detection of Biomarkers in Gas Plumes Using a Multi-Spectral Camera in the Proposed Enceladus Orbiter Mission (NASA)”). Pomiary Automatyka Robotyka 21(3) 35-44.

  • [22] Huffman R. E. 1985 “Atmospheric emission and absorption of ultraviolet radiation” Hand- book of Geophysics and the Space Environment Chap. 22 Air Force Geophysics Laboratory Air Force Systems Command US Air Force Springfield.

  • [23] Lutgens F. K. Tarbuck E. J. Tusa D. 1995 The atmosphere. Englewood Cliffs NJ: Prentice-Hall.

  • [24] Enfield D. B. Smith P. J. 2017 “Climate” from:

  • [25] Hendrix A. R. Hansen C. J. Holsclaw G. M. 2010 “The ultraviolet reflectance of Enceladus: Implications for surface composition” Icarus 206(2) 608-617.

  • [26] Hendrix A. R. Hansen C. J. 2009 “The surface composition of Enceladus: clues from the Ultraviolet” Proceedings of the International Astronomical Union 5(S263) 126-130.

  • [27] Farrell W. M. Wahlund J. E. Morooka M. Gurnett D. A. Kurth W. S. MacDowall R. J. 2012 “The electromagnetic pickup of submicron-sized dust above Enceladus’s northern hemisphere” Icarus 219(1) 498-501.

  • [28] Newman S. F. Buratti B. J. Jaumann R. Bauer J. M. Momary T. W. 2007 “Hydrogen peroxide on Enceladus” The Astrophysical Journal Letters 670(2) L143.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 67 67 8
PDF Downloads 50 50 6