Wind Tunnel Tests of Influence of Boosters and Fins on Aerodynamic Characteristics of the Experimental Rocket Platform

Open access


The paper presents results of wind tunnel tests of the Experimental Rocket Platform (ERP), which is developed in Institute of Aviation. It is designed as an easy accessible and affordable platform for microgravity experiments. Proposed design enables to perform experiments in microgravity for almost 150 seconds with apogee of about 100 km.

The full-scale model of the ERP has been investigated in the T-3 wind tunnel in Institute of Aviation. During the investigation, the aerodynamic loads of the rocket has been measured for the angle of attack up to 10° and the different rotation angle around the longitudinal axis (up to 90°, depending on the configuration). Three configurations has been investigated:

• without fins and boosters

• with fins and without boosters

• with fins and boosters

Additionally, the measurements of velocity field around the ERP using the Particle Image Velocimetry (PIV) has been performed.

Based on the wind tunnel test, an influence of fins and boosters on aerodynamic characteristics of the rocket has been described. Results of the wind tunnel tests show relatively high contribution of boosters in total aerodynamic drag. Some conclusions concerning performance and stability of the rocket have been presented.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Okninski A. 2015 “An optimization of sounding rockets for microgravity research” 66th International Astronautical Congress Jerusalem IAC-15 A2 5 10 x30167.

  • [2] Walczewski J. 1982 Polish sounding rocket program (Polskie rakiety badawcze) Wydawnictwa Komunikacji i Łączności Warsaw.

  • [3] Wiśniowski W. and Wolański P. 2014 „Rola Instytutu Lotnictwa w badaniach kosmicznych” (Institute of Aviation Activities in the field of space research) Prace Instytutu Lotnictwa (Transactions of the Institute of Aviation) No. 234 pp. 9-16.

  • [4] Grzegorzewski J. 1992 „Prace Instytutu Lotnictwa w dziedzinie techniki rakietowej” (Work of the Institute of Aviation Activities in the field of space research) Prace Instytutu Lotnictwa (Transactions of the Institute of Aviation) No. 131.

  • [5] Kaźmierski J. Krawczyk Z. and Nowak K. 1997 „Technologia rakietowa i kosmiczna w Instytucie Lotnictwa” (Rocket and Space technology in the Institute of Aviation) Prace Instytutu Lotnictwa (Transactions of the Institute of Aviation) No. 151.

  • [6] Lewandowski R. 1967 „Obciążenie aerodynamiczne niekierowanych rakiet balistycznych” (Aerodynamic loads of non-guided ballistic rockets) Prace Instytutu Lotnictwa (Transactions of the Institute of Aviation) No. 31 pp. 30-44.

  • [7] Kurow W. and Dolzanski J. 1964 Solid propellant rocket missile design Military University of Technology Publisher Warsaw.

  • [8] Lewandowski R. 1968 „Wpływ czynników zakłócających na ruch niekierowanej rakiety meteorologicznej“ (Influence of the disturbances on the non-guided mereology rocket flight) Prace Instytutu Lotnictwa (Transactions of the Institute of Aviation) No. 36 pp. 3-15.

  • [9] Lopez D. Domınguez D. and Gonzalo J. 2013 „Impact of turbulence modelling on external supersonic flow field simulations in rocket aerodynamics“ International Journal of Computational Fluid Dynamics Vol. 27 Nos. 8-10 pp. 332–341.

  • [10] Rasuo B. and Bengin A. 2015 “Aerodynamic shape optimization of guided missile based on wind tunnel testing and CFD simulation“ Thermal Scienc (00) pp.184-184.

  • [11] Ocokolijić G. and Rasuo B. 2012 “Testing an Anti Tank Missile Model with Jet Simulation in the T-35 Subsonic Wind Tunnel“ Scientific Technical Review No. 3-4(62) pp.14-20

  • [12] Bryson H. Sültrop H.P. Buchanan G. Hann C.E. Snowdon M. Rao A. Slee A. Fanning K. Wright D. McVicar J. Clark B. Harris G. Chen X.Q. 2016 “Vertical Wind Tunnel for Prediction of Rocket Flight Dynamics“ Aerospace No. 3(10).

  • [13] Ellis S. 2017 “SLS Shocked During Wind Tunnel Testing to Better Understand Rocket’s Transonic Behavior“ NASA website

  • [14] Marroquin J. and Lemoine P. 1992 “RESULTS OF WIND TUNNEL TESTS OF AN ASRM CONFIGURED 0.03 SCALE SPACE SHUTTLE INTEGRATED VEHICLE MODEL (47-OTS) IN THE AEDC 16-FOOT TRANSONIC WIND TUNNEL (IA613A) Space Shuttle aerothermodynamic data report“ DMS_DR-2548 NASA-CR-185 No. 696.

  • [15] “Aerodynamics Research Laboratory website” access: 2018.01.19.

  • [16] Adrian R. 2005 J. “Twenty Years of Particle Image Velocimetry“ Experiments in Fluids No. 39 pp. 159-169.

  • [17] Stryczniewicz W. 2012 “Development of Particle Image Velocimetry Algorithm“ Problems of Mechatronics No. 9 pp. 41-54.

  • [18] Surmacz K. Ruchała P. and Stryczniewicz W. 2015 “Wind tunnel tests of the development and demise of Vortex Ring State of the rotor“ Advances in Mechanics: Theoretical Computational and Interdisciplinary Issues Proceedings of the 3rd Polish Congress of Mechanics (PCM) and 21st International Conference on Computer Methods in Mechanics (CMM) CRC Press Gdansk pp. 8-11.

  • [19] Dziopa Z. 2007 Mechanika lotu (Flight mechanics) Wydawnictwo Politechniki Świętokrzyskiej Kielce.

  • [20] Fleeman E. L. 2001 Tactical Missile DesignAIAA Education Series American Institute of Aeronautics and Astronautics Reston USA.

  • [21] Barrowman J. S. and Barrowman J. A. 1966 “The Theoretical Prediction of the Center of Pressure” NARAM-8 R&D Project from the Apogee Components web site:

  • [22] Matyszewski J. 2014 „Rozwój metod obliczeniowych do symulacji trajektorii lotu rakiet” (Development of rocket flight simulation methods) Prace Instytutu Lotnictwa (American Institute of Aeronautics and Astronautics) No. 1(234) pp. 90-103.

  • [23] Cieśliński D. 2017 “Precise determination of static margins for unguided sounding rockets” presentation and conference paper 66th IAC IAC-15E214x30641 Jerusalem.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 7
PDF Downloads 118 118 4