Improvement and Optimisation of Gyroplane Performance

Abstract

The aim of this study was to investigate possibilities of improving performance characteristics of light gyroplane, as well to propose new or improved solutions enhancing performance of this type of rotorcraft. The study has been conducted based on computational methods of Computational Fluid Dynamics, Flight Dynamics, Computer Aided Design and Optimisation. Results of the research confirm that using advanced computational methods it is possible to improve significantly the performance characteristics of light gyroplane. It can be achieved both through optimisation of the main rotor design and flight control strategy. An unconventional approach to rotorcraft optimisation has been presented, distinguishing by the fact that the objective was calculated based on computer simulations of selected states of gyroplane flight. One of the optimised main rotors had already been examined during flight tests, which confirmed its good perfonnance-and-exploitation properties and its advantage over classic gyroplane rotors. Developed by the author the family of gyroplane airfoils is a valuable alternative to classic airfoils utilised so far. The same applies to the blades built based on those airfoils. In particular, it concerns the unconventional design of the rotor blade of span-variable: chord and relative thickness. The developed methodology of numerical optimisation of flight-control strategy during the jump takeoff of the gyroplane presents an original approach to those problems and may be valuable tool supporting gyroplane-pilot training.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] ANSYS Inc., “ANSYS FLUENT User’s Guide. Release 14.5”, 2013, available at: http://www.ansys.com

  • [2] Capon, P. T., 1979, Cierva’s First Autogiros, Aeroplane Monthly, Vol. 7 No. 4, May 1979, pp. 234-240.

  • [3] Cieślak S., 2011, Analiza możliwości zwiększenia prędkości przelotowej i zmniejszenia poziomu hałasu wiatrakowca (“Analysis of the possibility of increasing cruise speed and reduce autogiro’s noise”), Prace Instytutu Lotnictwa, Nr 219. s. 31-38. (in Polish)

  • [4] Cieślak S., 2011, Analiza wpływu czynników konstrukcyjnych oraz parametrów sterowania na czas trwania i wysokość bezrozbiegowego startu wiatrakowca (”Analysis of the impact of design factors and control parameters on duration and height of autogiro’s jump start”),. Prace Instytutu Lotnictwa, Nr 219. s. 39-46. (in Polish)

  • [5] Drela M., Youngren H., Scherrer M., and Deperrois A., 2012, “XFLR-5”, available at: http://www.xflr5.com/xflr5.htm

  • [6] Floros M.W., Johnson W., Performance Analysis of the Slowed-Rotor Compound Helicopter Configuration, Journal of the American Helicopter Society. Presented at the AHS 4th Decennial Specialists’ Conference on Aeromechanics, San Francisco, California, 21th - 23th January, 2004.

  • [7] Harwood P., Flying ‘New Generation’ Gyrocopter, A guide for converting pilots! http://www.gyrocopterschool.com/gyrocopter-autogyro-gyroplane/how-to-fly-gyros/

  • [8] http://airfoiltools.com/airfoil/details?airfoil=n8h12-il

  • [9] http://wirnikautorotacyjny.pl/, website of the project “Modern Gyroplane Main Rotor”, (UDA-POIG.01.03.01-14-007/12), co-financed by the European Regional Development Fund under the Operational Programme Innovative Economy 2007-2013.

  • [10] Nocedal J. and Wright S.J., 2006, Numerical Optimization, Springer-Verlag, 2nd ed., Berlin - New York.

  • [11] Pietrosiński, M., 2015, “Wpływ geometrii profilu lotniczego łopaty wirnika głównego na osiągi wiatrakowca” (Eng. : “The Influence of the Main Rotor Blade Airfoil Geometry on the Gyroplane Performance”), Transactions of the Institute of Aviation, 4 (241), s. 62-72.

  • [12] Stalewski W., 2012, “Parametric Modelling of Aerodynamic Objects - the Key to Successful Design and Optimisation”, Aerotecnica Missili e Spazio. Italian Association of Aeronautics and Astronautics (AIDAA). 1/2 (90), March-June 2012.

  • [13] Stalewski W. and Żółtak J. 2012, “Optimisation of the Helicopter Fuselage with Simulation of Main and Tail Rotor Influence”, in Proceedings of the 28th ICAS Congress of the International Council of the Aeronautical Sciences, ICAS, Brisbane, Australia, September 2012, ICAS, 1, pp. 256-266.

  • [14] Stalewski W., Projektowanie i optymalizacja aerodynamiczna wiropłatów, (Eng.: Aerodynamic Design and Optimisation of Rotorcraft). Wydawnictwa Naukowe Instytutu Lotnictwa, 2017.

  • [15] Stalewski W., 2013, “URANS Simulations of On or Near the Ground Flight of the Gyroplane”, in Proceedings of 39th European Rotorcraft Forum, ERF, Moscow, 3-6 September 2013, Russian Helicopters, pp. 55-57.

  • [16] Stalewski W., Zalewski W., 2011, Analiza obliczeniowa własności aerodynamicznych wirnika nośnego wiatrakowca w stanie lotu ustalonego (autorotacji) (“Computational analysis of aerodynamic performance of gyroplane main rotor under cruise flight condition (autorotation)”), Prace Instytutu Lotnictwa, Nr 219. s. 269-279. (in Polish)

  • [17] Stalewski W., Zalewski W., 2011, Analiza wybranych stanów lotu wiatrakowca w oparciu o obliczeniowe charakterystyki aerodynamiczne jego komponentów (“Analysis of selected states of gyroplane flight based on computational aerodynamic characteristics of its components”), Prace Instytutu Lotnictwa, Nr 219. s. 280-288. (in Polish)

  • [18] Stalewski W., Zalewski W., 2011, Symulacja pracy wirnika nośnego wiatrakowca w początkowej fazie pionowego startu (“Computational simulation of operation of gyroplane main rotor in initial phase of vertical take-off”), Prace Instytutu Lotnictwa, Nr 219. s. 289-296. (in Polish)

  • [19] Stalewski W., Żółtak J., 2012, Optimisation of the Helicopter Fuselage with Simulation of Main and Tail Rotor Influence, Proceedings of the 28th ICAS Congress of the International Council of the Aeronautical Sciences, ICAS, Brisbane, Australia, 23 - 28 September, 2012. ICAS 2012 CD-ROM Proceedings.

  • [20] Stivers L.S., Rice F.J., 1946, Aerodynamic Characteristics of Four NACA Airfoil Sections Designed for Helicopter Rotor Blades. National Advisory for Aeronutics. NACA RB No. L5K02. http://naca.central.cranfield.ac.uk/reports/1946/naca-rb-l5k02.pdf

  • [21] Szczepanik T., Dąbrowska J., 2009, Wiatrakowce, jako przewidywany kierunek rozwoju wiropłatów w XXI wieku (“Gyroplanes, as the predicted direction for the rotorcraft development in the 21st century”), Prace Instytutu Lotnictwa, Nr 201 (6/2009), s. 177-222. (in Polish)

  • [22] Wikipedia: https://en.wikipedia.org/wiki/Autogyro

OPEN ACCESS

Journal + Issues

Search