Particle-In-Cell Electrostatic Numerical Algorithm

Open access


Existing global models of interaction between the solar wind (SW) and the local interstellar medium (LISM) describe the heliosphere that arises as a result of this interaction. There is a strong motivation to develop a kinetic model using the Particle-in-Cell (PIC) method to describe phenomena which appear in the heliosphere. This is however a long term scientific goal. This paper describes an electrostatic Particle-in-Cell numerical model developed in the Institute of Aviation in Warsaw, which includes mechanical and charge exchange collisions between particles in the probabilistic manner using Direct Simulation Monte Carlo method. This is the first step into developing simulations of the heliosphere incorporating kinetic effects in collisionless plasmas. In this paper we focus only on presenting the work, which have been done on the numerical PIC algorithm.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Davis L. 1955 “Interplanetary Magnetic Fields and Cosmic Rays” Physical Review Volume 100 Issue 5 pp. 1440-1444.

  • [2] Parker E. 1963 “Interplanetary dynamical processes” Interscience Publishers New York NY.

  • [3] Axford W. I. 1972 “The Interaction of the Solar Wind With the Interstellar Medium” Solar Wind. Edited by Charles P. Sonett Paul J. Coleman and John M. Wilcox Washington Scientific and Technical Information Office NASA p.609.

  • [4] Baranov V. B. Malama Yu. G. 1993 “Model of the solar wind interaction with the local interstellar medium – Numerical solution of self-consistent problem” Journal of Geophysical Research Volume 98 Issue A9 pp. 15157-15163.

  • [5] Pauls H. L. Zank G. P. Williams L. L. 1995 “Interaction of the solar wind with the local interstellar medium” Journal of Geophysical Research Volume 100 Issue A11 pp. 21595-21604.

  • [6] Zank G. P. Pauls H. L. Williams L. L. Hall D. T. 1996 “Interaction of the solar wind with the local interstellar medium: A multifluid approach” Journal of Geophysical Research Volume 101 Issue A10 pp. 21639-21656.

  • [7] Washimi H. Tanaka 1996 “3-D Magnetic Field and Current System in the Heliosphere” Space Science Reviews Volume 78 Issue 1-2 pp. 85-94.

  • [8] Ratkiewicz R. Barnes A. Molvik G. A. Spreiter J. R. Stahara S. S. Vinokur M. Venkateswaran S. 1998 “Effect of varying strength and orientation of local interstellar magnetic field on configuration of exterior heliosphere: 3D MHD simulations” Astronomy and Astrophysics Volume 335 pp. 363-369.

  • [9] Pogorelov N.V. Matsuda T. 1998 “Influence of the interstellar magnetic field direction on the shape of the global heliopause” Journal of Geophysical Research Volume 10 pp. 237.

  • [10] Opher M. Stone E. C. Liewer P. C. 2006 “The Effects of a Local Interstellar Magnetic Field on Voyager 1 and 2 Observations” Astrophysical Journal Volume 640 Issue 1 pp. L71-L74..

  • [11] Heerikhuisen J. Pogorelov N.V. 2010 “Kinetic Modeling of Interstellar Hydrogen in the Heliosphere” Numerical Modeling of Space Plasma Flows Astronum-2009 Astronomical Society of the Pacific San Francisco pp. 227.

  • [12] M. Strumik A. Czechowski S. Grzedzielski W. M. Macek and R. Ratkiewicz 2013 “Small-Scale Local Phenomena Related to the Magnetic Reconnection and Turbulence in the Proximity of the Heliopause” Astrophysical Journal Letters Volume 773 L23 pp. 1-5.

  • [13] Kunz M. W. Schekochihihin A. A. Chen C. H. K. Abel I. Cowley S. C. 2015 “Inertialrange kinetic turbulence in pressure-anisotropic astrophysical plasmas” J. Plasma Phys. Volume 81 Issue 5 pp. 1-61.

  • [14] Howes G. G. Cowley S. C. Dorland W. Hammett G. W. Quataert E. Schekochihin A. A. 2006 “Astrophysical Gyrokinetics: Basic Equations and Linear Theory” The Astrophysical Journal Volume 651 Issue 1 pp. 590-614.

  • [15] Valentini F. Trávníček P. Califano F. Hellinger P. Mangeney A. 2007 “A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma” Journal of Computational Physics Vol. 225 Issue 1 pp. 753.

  • [16] Ren C. 2011 “Introduction to Particle-in-cell Methods in Plasma Simulations” The 2011 HEDP Summer School University of Rochester from

  • [17] Birdsall C. K. and Langdon A. B. 2005 “Plasma Physics via Computer Simulation” Taylor & Francis Group New York NY.

  • [18] Brieda L. 2010 “The Electrostatic Particle In Cell (ES-PIC) Method” from

  • [19] Griffiths D. J. 1999 “Introduction to Electrodynamics” 3th Edition Prentice Hall Upper Saddle River New Jersey NJ.

  • [20] Kahan W. 1958 “Gauss-Seidel Methods of Solving Large Systems of Linear Equations” Ph.D. thesis University of Toronto.

  • [21] Brieda L. 2016 “Fundamentals of the Particle In Cell Method 2016” lecture materials Particle In Cell Consulting LLC California CA.

  • [22] Deuflhard P. 2004 “Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms” Volume 35 Springer Berlin.

  • [23] Barrett R. Berry M. Chan T. F. Demmel J. Donato J. Dongarra J. Eijkhout V. Pozo R. Romine. C. van der Vorst H. 1994 “Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods” SIAM Philadelphia.

  • [24] Blum P.W. Fahr H.J. 1970 “Interaction between Interstellar Hydrogen and the Solar Wind” Astronomy & Astrophysics Volume 4 pp. 280-290.

  • [25] Bird G. A. 1994 “Molecular Gas Dynamics and the Direct Simulation of Gas Flows” Clarendon Press Oxford.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 2
PDF Downloads 72 72 2