Estimation of Strength Parameters of Aviation Products Made of Polymer Composites Based on Markov Chain Theory

Open access


The study investigates the fatigue strength of a component made of a glass composite material with polyester matrix, manufactured using a contact method (I) and by vacuum bagging (II). Modeling was carried out only for composite material II, due to significant spread of the strength of the composite material manufactured by contact lamination I, which means that such a material does not guarantee repeatability of the test results. Estimation of the composite material fatigue strength and residual strength was performed using a mathematical model based on the Markov chain theory. The model assumed that the material failure occurs at certain critical microvolume of the components operating within the plastic range. Observed relationships between the probability values and the distribution parameters for the static strength of the composite components, as well as the load values allow for deriving a fatigue curve equation. Obtained results are presented in the tables.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Lifshitz J. M. 1988 „Compressive Fatique and Static Properties of a Unidirectional Graphite/ Epoxy Composite” Journal of Composites Technology and Research 10 (3) pp. 100–106.

  • [2] Chatys R. Darska J. and Opala M. 2005 “The Effect of the Technological Parameters on the Quality of Composite Materials Produced with the RTM Method.” International Conference ”Terotechnology’2005” Kielce September 28-30 2005. ”Mechanika” nr. 83 pp. 21–28.

  • [3] Chatys R. 2009 „Mechanical Properties of Polymer Composites Produced by Resin Injection Molding for Applications Under Increased Demands for Quality and Repeatability” Journal Ultrasound 64(2) pp. 35–38.

  • [4] Topoliński T. and Weiner W. 1995 „Programowane badania zmęczeniowe ogniw przenośnika na tle wyników badań eksploatacyjnych” (Programmable the study fatigue the conveyor links on the background of the results of operational research - available in Polish) VI Konferencja nt. „Nowe kierunki modyfikacji i zastosowań tworzyw sztucznych” (6th Conference on “New directions of modifications and uses of plastics”) Poznań 10-13.05.1995 pp. 137–142.

  • [5] Szala J. 2007 „Podstawowe problemy konstruowania złożonych obiektów ze względu na zmęczeniowe pękanie” (Basic problems of constructing complex objects due to fatigue cracking - available in Polish) XXIII Sympozjon Podstaw Konstrukcji Maszyn (23rd Symposium on Machine Design Basics) Przemyśl 17-21 September 2007 Ed. by PRz Rzeszów.

  • [6] Reifsnider K. L. and Stinchcomb W. W. 2005 A Critical-Element Model of the Residual Strength and Life of Fatigue-Loaded Composite Coupons” Composite Materials: Fatigue and Fracture ASTM STP 907. pp. 298–313.

  • [7] Yang J. N. Jones S. L. Yang S. H. and Meskini A. 1990 „A Stiffness Degradation Model for Graphite/Epoxy Laminates” J of Composites Materials 24(3) pp. 753–763.

  • [8] Broutman L. J. and Sahu S. 1972 „A New Theory to Predict Cumulative Fatigue Damage in Fiberglass Reinforced Plastics” Composite Materials: Testing and Design 2nd Conference American Society for Testing and Materials Philadelphia ASTM STP 497 pp. 170–188.

  • [9] Rotem A. 1986 „Fatigue and Residual Strength of Composite Laminates” Engineering Fracture Mechanics 25(6) pp. 819–827.

  • [10] Paramonov Yu. M. Kleinhof M. A. and Paramonova A. Yu. 2006”Markov Model of Connection Between the Distribution of Static Strength and Fatigue Life of a Fibrous Composite” Mechanics of Composite Materials 42(5) pp. 615–630.

  • [11] Paramonov Yu. and Andersons J. 2007 „A family of weakest link models for fibre strength distribution” Composites: Part A38 pp. 1227–1233.

  • [12] Kemeny J. G and Snell J. L. 1966 „ Finite Marcov Chains” Princeton: N.J. Van Nostrand.

  • [13] Chatys R. Paramonova A. Yu. and Kleinhofs M. A. 2011 „Analysis of Residual Strength after Fatigue in Fibrous Composite using Markov Chains Model” Monography: “Selected Problems of Modeling and Control in Mechanics” Edited by Stanisław Adamczak and Leszek Radziszewski Kielce 2011 pp. 166–178.

  • [14] Paramonov J. Chatys R. Anderson J. and Kleinhofs M. 2012 „Markov Model of Fatigue of a Composite Material with Poisson Process of Defect Initiation” Mechanics of Composite Materials. 48(2) pp. 211–228.

  • [15] Paramonov Yu. Chatys R. Andersons J. and Kleinhofs M. 2011 „Poisson process of defect initiation in fatigue of a composite material” International Conferences „RelStat’2011” 20-21.10.2011 Riga Latvia pp. 1–12 (CD).

  • [16] Iosifescu M. 1988 „Skończone procesy Markowa i ich zastosowanie” (Finished Markov processes and their application - available in Polish) Ed. by PWN Warsaw Poland.

  • [17] Fleming W. H. and Soner H. M. 1993 „Controlled Markov processes and viscosity solutions” Springer Verlag New York.

  • [18] White D. J. 1992”Markov decision processes” Chichester: John Wiley.

  • [19] Found M. S and Quaresimin M. 2003 „Two–stage fatigue loading of woven carbon fiber reinforced laminates” Fatigue Fract. Eng. Mater. Struct. 26 pp. 17–26.

  • [20] ASTM D638 - Standard Test Method for Tensile Properties of Plastics.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 5
PDF Downloads 42 42 3