Turbine Blade of Gas Turbine Engine Additional Unloading by Changing the Layout of the Gravity Centre of the Shroud Shelf

Abstract

The article describes the impact of the gas turbine engine low-pressure turbine blade shroud shelf on the blade profile stress position. Attention is focused directly on the impact of the location of the gravity centre of the shroud shelf on blade stress distribution at the three most critical points of the profile. The paper describes the details of the calculation and the required expressions provided, as well as the results of the calculation example with clear graphical dependencies.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] I. Ozoliņš, Ē. Ozoliņš and V. Fedotova, “Development of a Method for Calculating the Working Blade Stress Profile of the Aviation Gas Turbine Engine for Student Training”. Transport and Aerospace Engineering Journal. vol. 6, no. 1, pp. 55–66, 2018. https://doi.org/10.2478/tae-2018-0007

  • [2] A. A. Inozemcev and V. L. Sandrackij, Gazoturbinnye dvigateli. OAO Aviadvigatel. Perm, 2006.

  • [3] R. J. Boyle, L. M. Agricola, A. H. Parikh, A. A. Ameri and V. K. Nagpal. “Shrouded CMC Rotor Blades for High Pressure Turbine Applications”. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. No. GT2018-76827, pp. V02BT41A028; 10 pages. https://doi.org/10.1115/GT2018-76827

  • [4] Y. Assoul, S. Benbelaid, V. Šijački-Žeravčić, G. Bakić and M. Đukić, “Life Estimation of First Stage High Pressure Gas Turbine Blades”. Scientific Technical Review, vol. LVIII, no. 2, pp. 8–13, 2008.

  • [5] R. I. Stephens, A. Fatemi, R. R. Stephens and H. O. Fuchs, Metal Fatigue in Engineering. New York, 2001.

  • [6] Z. Liu, Z. Chen and J. Chen, “The Strength Analysis of CFM56 Engine Blade”. MATEC Web of Conferences (ICMAA), vol. 166, 2018. https://doi.org/10.1051/matecconf/201816604001

  • [7] V. A. Frolov, V. G. Kocenko and S. B. Luzkov, Raschet lopatok kompressora i turbiny na staticheskuju prochnost i kolebanija. Samara: SGAU, 2000.

  • [8] M. L. Kuzmenko, V. S. Chigrin and S. E. Belova, Staticeskaja prochnost rabochih lopatok i diskov kompressorov i turbin GTD. Uchebnoe posobie. Rybinsk: RGATA, 2005.

  • [9] G. S. Skubacevskij, Aviacionnye gazo-turbinnye dvigateli. Konstrukcia i rascet detalej. Moscow: Mashinostroenie, 1981.

  • [10] B. E. Vasiljev and L. A. Magerramova. “Analiz vlijanija konfiguracii bondaznih polok lopatok turbin perspektivnih dvigatelei na procnostnije harakteristiki”. Vestnik YGATY, 2015.

  • [11] D. Z. Yu, D. H. Wen and H. R. Zhang, “Structural static analysis of gas turbine blade and disk of an aeroengine”. Structure & Environment Engineering, 2012.

  • [12] R. Fernandes, S. El-Borgi, K. Ahmed, M. I. Friswell and N. Jamia, “Static fracture and modal analysis simulation of a gas turbine compressor blade and bladed disk system”. Advanced Modeling and Simulation in Engineering Sciences, vol. 3, no. 1, December 2016. https://doi.org/10.1186/s40323-016-0083-7

  • [13] D. V. Hronina (ed.), Konstrukcia i proektirovanie aviacionnyh gazoturbinnyh dvigatelej. Moscow: Mashinostroenie, 1989.

  • [14] A. S. Vinogradov and G. Kartashov, Konstruirovanie lopatok i diskov AD i EU. Samara: RIO SGAU, 2007.

  • [15] N. I. Starcev, Konstrukcia i proektirovanie turbokompressora GTD. Uchebnoe posobie. Samara: RIO SGAU, 2006.

  • [16] V. F. Haritonov. Materialy detalej aviacionnyh gazoturbinnyh dvigatelej. UFA: UGATU, 2004.

OPEN ACCESS

Journal + Issues

Search