Turbine Blade of Gas Turbine Engine Additional Unloading by Changing the Layout of the Gravity Centre of the Shroud Shelf

Open access

Abstract

The article describes the impact of the gas turbine engine low-pressure turbine blade shroud shelf on the blade profile stress position. Attention is focused directly on the impact of the location of the gravity centre of the shroud shelf on blade stress distribution at the three most critical points of the profile. The paper describes the details of the calculation and the required expressions provided, as well as the results of the calculation example with clear graphical dependencies.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] I. Ozoliņš Ē. Ozoliņš and V. Fedotova “Development of a Method for Calculating the Working Blade Stress Profile of the Aviation Gas Turbine Engine for Student Training”. Transport and Aerospace Engineering Journal. vol. 6 no. 1 pp. 55–66 2018. https://doi.org/10.2478/tae-2018-0007

  • [2] A. A. Inozemcev and V. L. Sandrackij Gazoturbinnye dvigateli. OAO Aviadvigatel. Perm 2006.

  • [3] R. J. Boyle L. M. Agricola A. H. Parikh A. A. Ameri and V. K. Nagpal. “Shrouded CMC Rotor Blades for High Pressure Turbine Applications”. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. No. GT2018-76827 pp. V02BT41A028; 10 pages. https://doi.org/10.1115/GT2018-76827

  • [4] Y. Assoul S. Benbelaid V. Šijački-Žeravčić G. Bakić and M. Đukić “Life Estimation of First Stage High Pressure Gas Turbine Blades”. Scientific Technical Review vol. LVIII no. 2 pp. 8–13 2008.

  • [5] R. I. Stephens A. Fatemi R. R. Stephens and H. O. Fuchs Metal Fatigue in Engineering. New York 2001.

  • [6] Z. Liu Z. Chen and J. Chen “The Strength Analysis of CFM56 Engine Blade”. MATEC Web of Conferences (ICMAA) vol. 166 2018. https://doi.org/10.1051/matecconf/201816604001

  • [7] V. A. Frolov V. G. Kocenko and S. B. Luzkov Raschet lopatok kompressora i turbiny na staticheskuju prochnost i kolebanija. Samara: SGAU 2000.

  • [8] M. L. Kuzmenko V. S. Chigrin and S. E. Belova Staticeskaja prochnost rabochih lopatok i diskov kompressorov i turbin GTD. Uchebnoe posobie. Rybinsk: RGATA 2005.

  • [9] G. S. Skubacevskij Aviacionnye gazo-turbinnye dvigateli. Konstrukcia i rascet detalej. Moscow: Mashinostroenie 1981.

  • [10] B. E. Vasiljev and L. A. Magerramova. “Analiz vlijanija konfiguracii bondaznih polok lopatok turbin perspektivnih dvigatelei na procnostnije harakteristiki”. Vestnik YGATY 2015.

  • [11] D. Z. Yu D. H. Wen and H. R. Zhang “Structural static analysis of gas turbine blade and disk of an aeroengine”. Structure & Environment Engineering 2012.

  • [12] R. Fernandes S. El-Borgi K. Ahmed M. I. Friswell and N. Jamia “Static fracture and modal analysis simulation of a gas turbine compressor blade and bladed disk system”. Advanced Modeling and Simulation in Engineering Sciences vol. 3 no. 1 December 2016. https://doi.org/10.1186/s40323-016-0083-7

  • [13] D. V. Hronina (ed.) Konstrukcia i proektirovanie aviacionnyh gazoturbinnyh dvigatelej. Moscow: Mashinostroenie 1989.

  • [14] A. S. Vinogradov and G. Kartashov Konstruirovanie lopatok i diskov AD i EU. Samara: RIO SGAU 2007.

  • [15] N. I. Starcev Konstrukcia i proektirovanie turbokompressora GTD. Uchebnoe posobie. Samara: RIO SGAU 2006.

  • [16] V. F. Haritonov. Materialy detalej aviacionnyh gazoturbinnyh dvigatelej. UFA: UGATU 2004.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 134 134 13
PDF Downloads 146 146 26