Comparative Study on Different Types of Regression Applied to Unemployment in Maramures County of Romania

Magnolia Tilca 1  and Meda Bojor 2
  • 1 ”Vasile Goldis” Western University of Arad
  • 2 ”Gheorghe Sincai” National College Baia Mare


We are studying the economic phenomenon of the unemployment in Maramures County of Romania. To obtain plausible conclusions regarding this study we apply different types of regression: the linear regression, polynomial regression, spline and B-spline regression. In this paper we focus on the numerical side of the research and we compare the predicted values, the graphic representation of the evolution, the future predictions and the errors generated by the regressions mentioned above. The calculations are performed in R, a programming language for statistical computing. An implementation in R is given.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Blundell, R., Chen, X. K. (2007). Semi-Nonparametric IV Estimation of Shape- Invariant Engel Curves. Econometrica, Vol. 75, No. 6 , pp. 1613-1669.

  • 2. Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J. (1984). Classification and regression trees. Wadsworth and Books/Cole, Belmont, CA.

  • 3. de Boor, C. (1972). On calculating with B-splines. J. Approx. Theory, 6 , pp 50-62.

  • 4. Friedman, J. H. (1991). Multivariate Adaptive Regression Splines. The Annals of Statistics, Vol. 19, No. 1 , pp. 1-67.

  • 5. Geambasu, L., Jianu, I., Geambasu, C. (2010). Spline linear regression used for evaluating financial assets. Analele Universitaţii “Constantin Brâncusi” din Târgu Jiu, Seria Economie, Nr. 4/2010 , pp. 310-321.

  • 6. Greiner, A. (2009). Estimating penalized spline regressions: theory and application to economics. Applied Economics Letters, 16 , pp. 1831-1835.

  • 7. Haupt, H., Kagerer, K., Steiner, W. (2014). Smooth quantile bases modeling of brand sales, price and promotional effects from retail scanner panels. Journal of Applied Econometrics, DOI 10.1016/j.jeconom.2014.06.003.

  • 8. Liu, R., Yang, L. (2010). Spline-backfitted kernel smoothing of additive coefficient model. Econometric Theory 26 , pp. 29-59.

  • 9. Ma, S., Racine, J., Yang, L. (2015). Spline regression in the presence of categorical predictors. J. Appl. Econ. 30 , pp. 705-717.

  • 10. Morgan, J. N., Sonquist, J. A. (1963). Problems in the analysis of survey data, and a proposal. J. Amer. Statist. Assoc. 58 , pp. 415-434.

  • 11. National Institute of Statistics. (2011). Unemployment BIM methodology on a monthly basis. Retrieved from Accessed 6 April 2016.

  • 12. Paradis, E. (2013). R for beginners. Retrieved from Accessed 6 Aplir 2016.

  • 13. Cambridge Series in Statistical and Probabilistic Mathematics, volume 12, Cambridge University Press.

  • 14. Ruppert, D., Wand, M., Carroll, R. (2003). Semiparametric regression. New York: Cambridge University Press.

  • 15. Sunil, R. (2015). 7 tipes of regression techniques you should know! Retrieved from Analytics Vidhya: Accesed 12 April 2016.

  • 16. Vlad, C., Brezeanu P., Fiscality - a relevant factor influencing regional development in Romania and the European Union, Studia Universitatis “Vasile Goldis” Arad Economics Series, Vol. 26, Issue 2/2016, pp 48-62.

  • 17. Wu, W. (2009). An application of spline regression to dose-response analysis in observational study. Retrieved from Nashville - Vanderbilt University Medical School, USA. Accesed 13 April 2016.


Journal + Issues