Precipitation of heavy metals from acid mine drainage and their geochemical modeling

Open access

Abstract

Geochemical modeling plays an increasingly vital role in a number of areas of geoscience, ranging from groundwater and surface water hydrology to environmental preservation and remediation. Geochemical modeling is also used to model the interaction processes at the water - sediment interface in acid mine drainage (AMD). AMD contains high concentrations of sulfate and dissolved metals and it is a serious environmental problem in eastern Slovakia. The paper is focused on comparing the results of laboratory precipitation of metal ions from AMD (the Smolnik creek, Slovakia) with the results obtained by geochemical modeling software Visual Minteq 3.0.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Kleinmann R.L.P. (1990). Acid mine drainage in the United States. Proceedings First Midwestern Region Reclamation Conference 1-8 Southern Illinois University Carbondale Illinois USA.

  • [2] Aubertin M. Bussière B. & Bernier L. (2002). Environnement et gestion des rejets miniers. [Manual on CD-ROM] Montréal Québec: Les Presses Internationales de Polytechnique.

  • [3] Ptacek C.J. Blowes D.W. (2003). Chapter 1: Environmental Aspects of Mine Wastes Geochemistry of concentrated waters at mine waste sites. Jambor J.L. Blowes D.W. & Ritchie A.I.M. (Eds.) Short Course Volume 31 Mineralogical Association of Canada 239-252 Canada.

  • [4] Price W.A. (2003). Chapter 1: Environmental Aspects of Mine WastesChallenges posed by metal leaching and acid rock drainage and approaches used to address them. Jambor J.L. Blowes D.W. & Ritchie A.I.M. (Eds.) Short Course Volume 31 Mineralogical Association of Canada 1-10 Canada.

  • [5] Parker G. Robertson A. (1999). Acid Drainage. Australian Minerals & Energy Environment Foundation Melbourne Australia.

  • [6] Salomons W. (1995). Environmental-impact of metals derived from mining activities - processes predictions prevention. Journal of Geochemical Exploration Volume 52 No. (1-2) 5-23.

  • [7] Scharer J.M. Nicholson R.V. Halbert B. & Snodgrass W.J. (1994). A computer program to assess acid generation in pyritic tailings. Alpers C.N. Blowes D.W. (Eds) Environmental geochemistry of sulfide oxidation. ACS symposium series Vol. 550 132-152 Washington D.C. USA.

  • [8] Wunderly M.D. Blowes D.W. Frind E.O. & Ptacek C.J. (1996). Sulfide mineral oxidation and subsequent reactive transport of oxidation products in mine tailing impoundments: A numerical model. Water Resources Research Volume 32 3173-3187.

  • [9] Alpers C.N. Nordstrom D.K. (1999). Geochemical modeling of water-rock interactions in mining environments. Plumlee G.S. Logsdon M.J. (Eds) The environmental geochemistry of mineral deposits. Reviews in Economic Geology Soc. Ec. Geologists Volume 6A 289-323 Chelsea USA.

  • [10] MEND. (2000). MEND Manual Volume 3 - Prediction. Mine Neutral Drainage Programme [MEND 5.4.2c] Ottawa Canada.

  • [11] Slesarova A. (2004). The Role of Geochemical Modeling in Predicting Quality Evolution of Acid Mine Drainage. Acta Montanistica Slovaca Volume 9 No. 4 462-466.

  • [12] Nordstrom D.K. Alpers C.N. (1999). Geochemistry of acid mine waters. Plumlee G.S. Logsdon M.J. (Eds) The environmental geochemistry of mineral deposits. Reviews in Economic Geology Soc. Ec. Geologists Volume 6A 133-156 Chelsea USA.

  • [13] Guihua L. Xiaobin L. Chuanfu Z. & Zhihong P. (1998). Formation and solubility of potassium aluminosilicate. Transactions of Nonferrous Metals Society of China Volume 8 120-2.

  • [14] Wei X. Viadero R.C. & Buzby K.M. (2005). Recovery of Iron and Aluminum from AMD by Selective precipitation. Environmental Engineering Science Volume 22 No. 6 745-755.

  • [15] Balintova M. Luptakova A. Junakova N. Macingova E. (2009). The possibilities of metal concentration decrease in acid mine drainage Zeszyty naukowe Politechniki Rzeszowskiej: Budownictwo i Inzynieria Srodowiska Volume 266 9-17.

  • [16] Gerringa L.J.A. (1990). Aerobic degradation of organic mater and the mobility of Cu Cd Ni Pb Zn Fe and Mn in marine sediment slurries Marine Chemistry Volume 29 355 - 374.

  • [17] Jenke D.R Diebold F.E. (1983). Recovery of valuable metals from acid mine drainage by selective titration. Water research Volume 17 1585-1590.

  • [18] Sheeremata T. Kuyucak N. (1196). Value recovery from acid mine drainage Metals removal from acid mine drainage-chemical methods MEND project 3.21.2a Pointe-Claire PQ Noranda Technology Center.

  • [19] Langmuir D. (1997). Aqueous Environmental Geochemistry. Prentice Hall Inc. New Jersey.

  • [20] Matlock M.M. Howerton B.S. Atwood D.A. (2002). Chemical precipitation of heavy metals from AMD. Water Research. Volume 36 4757-4764.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 332 72 2
PDF Downloads 131 34 2