Development of the limit values of micronutrient deficiency in soil determined using Mehlich 3 extractant for Polish soil conditions. Part I. Wheat

Open access

Abstract

To implement the Mehlich 3 method in Polish agro-chemical laboratories, limit values for deficiency of B, Cu, Fe, Mn and Zn in soil for wheat were developed. The values were developed on the basis of 1921 fields with wheat, evenly distributed throughout Poland. Soil samples were collected from these fields in 2016, together with the plants growing on them, at the stage of stem elongation (BBCH 30/31). The concentration of micronutrients was determined in all soil and plant samples. In addition, pH, texture, and the content of organic carbon and available phosphorus were determined in soil samples. Moreover, grain yield after wheat harvest was estimated for all fields. Limit values were developed by two independent methods: 1) the regression equation method and 2) the so-called high yield method. In the first case, the limit microelement concentration in soil was calculated from the equation describing the relationship between the bioaccumulation factor (R/G) and a specific soil feature (n=1921). The bioaccumulation factor is the quotient of the concentration of a micronutrient in a plant (R) and its concentration in the soil (G) determined by the Mehlich 3 method. The equations were constructed using the Stagraphics program. For each micronutrient, 8 models were tested in search for the equation with the highest determination coefficient r2. Limit values were calculated after substituting the critical value of microelements in the plant (R) to the selected model and transforming the equation accordingly. The basis of the second method was to separate the “high yield group” ≥7.0 t ha−1 (n=578) from the entire data set. In this group, lower quintiles for the Mehlich 3-concentration of individual microelements in soil were calculated. The lower quintiles (QU1) were taken as limit values. It was assumed that QU1 is a good indicator of the lowest micronutrient concentration in the soil at which a yield of 7.0 t ha−1 or higher can be obtained. The comparison of the values calculated with the regression equations method and the high yield method showed their similarity, which confirmed the reliability of these values. The proposed values define the limit for low microelements concentration in soil determined with the Mehlich 3 method, below which wheat fertilization with these nutrients is recommended.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adiloglu A. Kursun I. 2003. Determination of suitable chemical extraction methods for available zinc content of paddy soils at thrace region in Turkey. Communications in Soil Science and Plant Analysis 34(17–18): 2607–2617.

  • Antonkiewicz J. Kołodziej B. Bielińska E.J. Gleń-Karolczyk K. 2019. Research on the uptake and use of trace elements from municipal sewage sludge by multiflora rose and Virginia fanpetals. Journal of Elementology 24(3): 987–1005.

  • Başar H. 2009. Methods for estimating phytoavailable metals in soils. Communications in Soil Science and Plant Analysis 40(7–8): 1087–1105.

  • Bergmann W. 1992. Nutritional disorders of plants-development visual and analytical diagnosis. Gustav Fischer Verlag Jena Stuttgart New York.

  • Black A. McLaren R.G. Reichman S.M. Speir T.W. Condron L.M. 2011. Evaluation of soil metal bioavailability estimates using two plant species (L. perenne and T. aestivum) grown in a range of agricultural soils treated with biosolids and metal salts. Environmental Pollution 159(6): 1523–1535.

  • Boreczek B. Sumorek-Gołąbek A. Janda B. 2012. Wielopierwiastkowa analiza gleb metodą Mehlich III. Główne Laboratorium Analiz Chemicznych IUNG-PIB Puławy: 17 pp. (materiały niepublikowane do użytku wewnętrznego).

  • Brennan D. Coulter B. Mullen G. Courtney R. 2008. Evaluation of Mehlich 3 for extraction of copper and zinc from Irish grassland soils and for prediction of herbage content. Communications in Soil Science and Plant Analysis 39(13–14): 1943–1962.

  • Bortolon L. Gianello C. 2012. Multielement extraction from southern Brazilian soils. Communications in Soil Science and Plant Analysis 43(12): 1615–1624.

  • Fotyma M. Kęsik K. Lipiński W. Filipiak K. Purchała L. 2015. Testy glebowe jako podstawa doradztwa nawozowego. Studia i Raporty IUNG-PIB 42(16): 9–51.

  • Gediga K. Spiak Z. Piszcz U. Bielecki K. 2015. Suitability of different soil extractants for determination of available Cu and Mn contents in Polish soils. Communications in Soil Science and Plant Analysis 46: 81–93.

  • Gembarzewski H. Korzeniowska J. 1996. Wybór metody ekstrakcji mikroelementów z gleby i opracowanie liczb granicznych przy użyciu regresji wielokrotnej. Zeszyty Problemowe Postępów Nauk Rolniczych 434: 353–364.

  • GUS 2018. Mały Rocznik Statystyczny Polski Zakład Wydawnictw Statystycznych Warszawa.

  • Kabala C. Galka B. Labaz B. Anjos L. de Souza Cavassani R. 2018. Towards more simple and coherent chemical criteria in a classification of anthropogenic soils: A comparison of phosphorus tests for diagnostic horizons and properties. Geoderma 320: 1–11.

  • Kabata-Pendias A. Mukherjee A.B. 2007. Trace elements from soil to human. Springer Science & Business Media: 550 pp.

  • Kabata-Pendias A. Pendias H. 2001.Trace Elements in Soils and Plants. CRC Press Boca Raton Fla. USA: 413 pp.

  • Kantek K. Korzeniowska J. 2013. The usefulness of Mehlich 3 and 1 M HCl extractant to assess copper deficiency in soil for environmental monitoring purpose/Przydatność ekstrahentów Mehlich 3 i 1 M HCl do oceny niedoborów miedzi w glebie pod kątem monitoringu środowiska. Ochrona Środowiska i Zasobów Naturalnych 24(3): 1–5.

  • Kępka W. Antonkiewicz J. Gambuś F. Witkowicz R. 2017. The effect of municipal sewage sludge on the content use and mass ratios of some elements in spring barley biomass. Soil Science Annual 68(2): 99–105.

  • Kęsik K. Jadczyszyn T. Lipiński W. Jurga B. 2015. Adaptacja testu Mehlicha 3 do rutynowych oznaczeń zawartości fosforu potasu i magnezu w glebie. Przemysł Chemiczny 94(6): 973–976.

  • Kęsik K. Lipiński W. Jadczyszyn T. Boreczek B. Janda B. Sumorek-Gołąbek A. Kocoń A. Ochal P. Pikuła D. Bochniarz A. 2014. Liczby graniczne oraz procedura badawcza oznaczania metodą Mehlich 3 ruchomych form fosforu potasu i magnezu w glebach mineralnych. Instrukcja wdrożeniowa nr 230 IUNG-PIB Puławy: 26 pp.

  • Khan M.A.R. Bolan N.S. 2005. Soil test to predict the copper availability in pasture soils. Communications in Soil Science and Plant Analysis 36(17–18): 2601–2624.

  • Korzeniowska J. 2008a. Response of ten winter wheat cultivars to boron foliar application in a temperate climate (South West Poland). Agronomy Research 6(2): 471-476.

  • Korzeniowska J. 2008b. Potrzeby nawożenia pszenicy cynkiem miedzią i borem w warunkach glebowo-klimatycznych Polski. Monografie i Rozprawy Naukowe 20 IUNG-PIB Puławy: 92 pp.

  • Korzeniowska J. Stanisławska-Glubiak E. 2015. Comparison of 1 M HCl and Mehlich 3 for assessment of the micronutrient status of polish soils in the context of winter wheat nutritional demands. Communications in Soil Science and Plant Analysis 46(10): 1263–1277.

  • Korzeniowska J. Stanisławska-Glubiak E. Lipiński W. 2016. Porównanie wyników ekstrakcji mikroelementów z gleby roztworem 1 M HCl i Mehlich 3. Zeszyty Naukowe Uniwersytetu Przyrodniczego we Wrocławiu: Rolnictwo 619: 59–68.

  • Lipiński W. 2019. Agrochemiczne właściwości gleb użytkowanych rolniczo. Inżynieria Ekologiczna 20(1): 1–12.

  • Liu J. Liao Z. Hu C. Qiu W. Sun X. Tan Q. 2011. Relationship between Mehlich-3 ASI and routine methods of soil available nutrients analysis for paddy soils in China. Journal of Food Agriculture & Environment 9(1): 516–520.

  • Loide V. Noges M. Rebane J. 2005. Assessment of the agro-chemical properties of the soil using the extraction solution Mehlich 3 in Estonia. Agronomy Research 3(1): 73–80.

  • Mehlich A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis 15(12): 1409–1416.

  • Menzies N.W. Donn M.J. Kopittke P.M. 2007. Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution 145(1): 121–130.

  • Mercik S. Stępień W. Matysiak B. 2004. Mobilność i pobieranie miedzi oraz cynku przez rośliny w zależności od właściwości gleby. Zeszyty Problemowe Postępów Nauk Rolniczych 502: 235–245.

  • Ostatek-Boczyński Z. Lee-Steere P. 2012. Evaluation of Mehlich 3 as a universal nutrient extractant for Australian sugar-cane soils. Communications in Soil Science and Plant Analysis 43: 623–630.

  • Rodriguez B. Ramirez R. 2005. A soil test for determining available copper in acidic soils of Venezuela. Interciencia 30(6): 361–364.

  • Rutkowska B. Szulc W. Łabętowicz J. 2004. The effect of the content of organic carbon in the soil on the chemical composition of the soil solution. Polish Journal of Soil Science 37: 105–12.

  • Rutkowska B. Szulc W. Łabętowicz J. 2006. Skład granulometryczny gleby jako czynnik determinujący stężenie jonów w roztworze glebowym. Journal of Elementology 11(1): 89–98.

  • Sarto M.V.M. Steiner F. Lana M.C. 2011. Assessment of micronutrient extractants from soils of Parana Brazil. Revista Brasileira de Ciência do Solo 35(6): 2093–2103.

  • Seth A. Sarkar D. Masto R.E. Batabyal K. Saha S. Murmu S. Das R. Padhan D. Mandal B. 2018. Critical limits of Mehlich 3 extractable phosphorous potassium sulfur boron and zinc in soils for nutrition of rice (Oryza sativa L.). Journal of Soil Science and Plant Nutrition 18(2): 512–523.

  • Schnug E. Haneklaus++ S. 2008. Evaluation of the relative significance of sulfur and other essential mineral elements in oilseed rape cereals and sugar beet production. [In:] J. Jez ed. (2008) Sulfur: A missing link between soils crops and nutrition. CSSA-ASA-SSSA Publishing Madison WI: 219–233 pp.

  • Sedlar O. Balík J. Kulhanek M. Cerny J. Kos M. 2018. Mehlich 3 extractant used for the evaluation of wheat-available phosphorus and zinc in calcareous soils. Plant Soil and Environment 64(2): 53–7.

  • Slaton N.A. Wilson Jr C.E. Norman R.J. Gbur Jr E.E. 2002. Development of a critical Mehlich 3 soil zinc concentration for rice in Arkansas. Communications in Soil Science and Plant Analysis 33(15–18): 2759–2770.

  • Stanisławska-Glubiak E. Korzeniowska J. 2007. Zasady nawożenia mikroelementami roślin uprawnych. Studia i Raporty IUNG-PIB 8: 99–110.

  • Stanisławska-Glubiak E. Korzeniowska J. Lipiński W. 2019. Opracowanie liczb granicznych niedoboru mikroelementów w glebie oznaczanych przy użyciu ekstrahenta Mehlich 3 dla polskich warunków glebowych. Część II. Rzepak. Soil Science Annual 70(4): 324-330.

  • Zalecenia nawozowe. Praca zbiorowa. 1990. Część I. Liczby graniczne do wyceny w glebach makro- i mikroelementów. Wydawnictwo IUNG Puławy P(44): 1–26.

  • Zbíral J. 2016. Determination of plant-available micronutrients by the Mehlich 3 soil extractant-a proposal of critical values. Plant Soil and Environment 62(11): 527–531.

  • Zbíral J. Nemec P. 2000. Integrating of Mehlich 3 extractant into the Czech soil testing scheme. Communications in Soil Science and Plant Analysis 31(11–14): 2171–2182.

Search
Journal information
Impact Factor


CiteScore 2018: 1.08

SCImago Journal Rank (SJR) 2018: 0.427
Source Normalized Impact per Paper (SNIP) 2018: 0.586

Index Copernicus Value (ICV) 2018: 114.45 pkt

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 28 28 28
PDF Downloads 33 33 33