Suitability of World Reference Base for Soil Resources (WRB) to describe and classify chernozemic soils in Central Europe

Abstract

Chernozemic soils are distinguished based on the presence of thick, black or very dark, rich in humus, well-structural and base-saturated topsoil horizon, and the accumulation of secondary carbonates within soil profile. In Central Europe these soils occur in variable forms, respectively to climate gradients, position in the landscape, moisture regime, land use, and erosion/accumulation intensity. “Typical” chernozems, correlated with Calcic or Haplic Chernozems, are similarly positioned at basic classification level in the national soil classifications in Poland, Slovakia and Hungary, and in WRB. Chernozemic soils at various stages of their transformation are placed in Chernozems, Phaeozems or Kastanozems, supplied with respective qualifiers, e.g. Cambic, Luvic, Salic/Protosalic, Sodic/Protosodic etc. Some primeval Chernozems thinned by erosion may still fulfil criteria of Chernozems, but commonly are shifted to Calcisols. Soils upbuilt (aggraded) with colluvial additions may also retain their original placement in Chernozems, getting supplementary qualifier Colluvic. “Hydromorphic” chernozemic soils, in many CE systems are placed as separate soil type (“czarne ziemie” or “čiernice”) at the same level with “typical” chernozems. Classification of these soils in WRB depends on the presence of chernic horizon, depth of secondary carbonate accumulation and depth of gleyic/stagnic properties, and may vary from Gleyic/Stagnic Chernozems/Phaeozems to Mollic Gleysols/Stagnosols. Although WRB classification differs from national classifications in the concepts and priorities of classification, it provides large opportunity to reflect the spatial variability and various stages of transformation/degradation of chernozemic soils in Central Europe.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Afanasyeva E.A., 1966. Chernozems of the middle Russian Upland. Nauka, Moscow: 223 pp.

  • Alexandrovskiy A.L., Sedov S.N., Shishkov V.A., 2014. The development of deep soil processes in ancient kurgans of the North Caucasus. Catena 112: 65–71.

  • Barczi A., Tóth T.M., Csanádi A., Sümegi P., Czinkota I., 2006. Reconstruction of the paleo-environment and soil evolution of the Csípo-halom kurgan, Hungary. Quaternary International 156: 49–59.

  • Bedrna Z., 1966. Topografický rad pôd výškovej pásmovitosti na Trnavskej pahorkatine. Náuka o Zemi IV, Pedologica 2, Bratislava.

  • Bieganowski A., Witkowska-Walczak B., Gliński J., Sokołowska Z., Sławiński C., Brzezińska M., Włodarczyk T., 2013. Database of Polish arable mineral soils: a review. International Agrophysics 27(3): 335–350.

  • Borowiec J., 1968. The problem of typology and development trends of chernozems occurring in Poland. Roczniki Gleboznawcze – Soil Science Annual 19: 253–260.

  • Chendev Y.G., Aleksandrovskiy A.L., Khokhlova O.S., Dergacheva M.I., Petin A.N., Golotvin A.N., Uvarkin S.V., 2017. Evolution of forest pedogenesis in the south of the forest-steppe of the Central Russian Upland in the Late Holocene. Eurasian Soil Science 50: 1–13.

  • Cieśla W., 1965. Problematyka czarnych ziem Niziny Wielkopolskiej ze szczególnym uwzględnieniem Kujaw. Rocz. WSR Poznań 30: 43–53.

  • Długosz J., Kobierski M., Spychaj-Fabisiak E., 1997. Skład mineralogiczny frakcji ilastej warstwy ornej wybranych czarnych ziem kujawskich. Roczniki Gleboznawcze – Soil Science Annual 48(1/2): 87–93.

  • Dóka L., 2013. Moisture regime of chernozem soil at different water supply levels Agrokémia és Talajtan 62(1): 23–36. https://doi.org/10.1556/Agrokem.62.2013.1.2

  • Drewnik M., Skiba M., Szymański W., Żyła M., 2014. Mineral composition vs. soil forming processes in loess soils-a case study from Kraków (Southern Poland). Catena 119: 166–173.

  • Drewnik M., Żyła M., 2019. Properties and classification of heavily eroded post-chernozem soils in Proszowice Plateau (Southern Poland). Soil Science Annual 70(3): 225–233.

  • Driessen P., Deckers J., Spaargaren O., Nachtergaele F., 2001. Lecture notes on the major soils of the world. Food and Agriculture Organization (FAO) Reports, 94, Rome: 334 pp.

  • Eckmeier E., Gerlach R., Gehrt E., Schmidt M.W.I., 2007. Pedogenesis of Chernozems in central Europe – A review. Geoderma 139: 288–299.

  • Farkas C., Hernádi H., Makó A., Máté F., 2009. Climate sensitivity of the soil water regime on pseudomyceliar chernozem soils. Agrokémia és Talajtan 58(2): 197–214. https://doi.org/10.1556/Agrokem.58.2009.2.3

  • Farsang A., Szolnoki Z., Barta K., Puskás I., 2015. Proposal for the classification of anthropogenic soils in the framework of the updated Hungarian Soil Classification System. Agrokémia és Talajtan, 64: 299-316. https://doi.org/10.1556/0088.2015.64.1.22

  • Földvári G., 1966. Magyarország genetikus talajtípusainak, altípusainak és változatainak szisztematikus jegyzéke. [In:] A genetikus üzemi talajtérképezés módszerkönyve (Szabolcs I., Editor). Országos Mezőgazdasági Minőségvizsgáló Intézet, Budapest: 165–254.

  • Fuchs M., Waltner I., Szegi T., Láng V. Michéli E., 2011. Taxonomic distances of soil types in Hungary based on soil-forming processes. Agrokémia és Talajtan, 60(1): 33–44. https://doi.org/10.1556/Agrokem.60.2011.1.4

  • Fulajtár E., Jenčo M., Saksa M., 2016. Soil erosion mapping with the aid of aerial photographs tested at Pastovce, Ipe¾ská pahorkatina. [In:] Interdisciplinary studies of river channels and UAV mapping in the V4 region (Šulc Michalková M., Miřijovský J., Editors). Comenius University, Bratislava: 247–268.

  • Gerasimova M.I., Khitrov N.B., 2012. Comparison of the results of soil profiles’ diagnostics performed in three classification systems. Eurasian soil science 45(12): 1087.

  • Hraško J., 1966. Černozeme Podunajskej nížiny, problémy ich genézy a klasifikácie. Náuka o Zemi III, Pedologica 1, Bratislava.

  • International Network of Black Soils, 2019. http://www.fao.org/global-soil-partnership/intergovernmental-technical-panel-soils/gsoc17-implementation/internationalnetworkblacksoils/en/

  • IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, Update 2015. International soil classification system for naming soil and creating legends for soil maps. Food and Agriculture Organization of the United Nations, Rome.

  • Jonczak J., Šimanský V., Polláková N., 2017. The content and profile distribution of carbon and nitrogen fractions susceptible to acid hydrolysis in Haplic Chernozems and Mollic Fluvisols of western Slovakia. Journal of Elementology 22(4): 1295–1309.

  • Kabała C., 2019. Chernozem (czarnoziem) – Soil of the year 2019 in Poland. Origin, classification and properties of Chernozems in Poland. Soil Science Annual 70(3): 184–192.

  • Kabała C., Bekier J., Binczycki T., Bogacz A., Bojko O., Cwielag-Piasecka I., Debicka M., Cuske M., Gałka B., Gersztyn L., Glina B., Jamroz E., Jezierski P., Karczewska A., Kaszubkiewicz J., Kawałko D., Kierczak J., Kocowicz A., Krupski M., Woźniczka P., 2015. Soils of Lower Silesia. Polish Society of Soil Science, Polish Society of Humic Substances, Wrocław.

  • Kabała C., Charzyński P., Chodorowski J., Drewnik M., Glina B., Greinert A., Hulisz P., Jankowski M., Jonczak J., Łabaz B., Łachacz A., Marzec M., Mendyk Ł., Musiał P., Musielok Ł., Smreczak B., Sowiński P., Świtoniak M., Uzarowicz Ł., Waroszewski J., 2019a. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(2): 71–97.

  • Kabała C., Przybył A., Krupski M., Łabaz B., Waroszewski J., 2019b. Origin, age and transformation of Chernozems in northern Central Europe – New data from Neolithic earthen barrows in SW Poland. Catena 180: 83–102.

  • Kabała C., Łabaz B., 2018. Relationships between soil pH and base saturation – conclusions for Polish and international soil classifications. Soil Science Annual 69(4): 206–214.

  • Kalinina O., Krause S.E., Goryachkin S.V., Karavaeva N.A., Lyuri D.I., Giani L., 2011. Self-restoration of post-agrogenic chernozems of Russia: Soil development, carbon stocks, and dynamics of carbon pools. Geoderma 162: 196–206.

  • Khitrov N., Smirnova M., Lozbenev N., Levchenko E., Gribov V., Kozlov D., Rukhovich D., Kalinina N., Koroleva P., 2019. The soil cover patterns of forest-steppe and steppe zones at the East-European Plain. Soil Science Annual 70(3): 198–210.

  • Krippel E., 1986. Postglaciálny vývoj vegetácie Slovenska. Veda, Bratislava.

  • Láng V., Fuchs M., Waltner I., Michéli E., 2013. Soil taxonomic distance, a tool for correlation: As exemplified by the Hungarian Brown Forest Soils and related WRB Reference Soil Groups. Geoderma 192: 269–276. https://doi.org/10.1016/j.geoderma.2012.07.023

  • Lorz C., Saile T., 2011. Antropogenic pedogenesis of Chernozems in Germany? – A critical review. Quaternary International 243: 273–279.

  • Łabaz B., Kabała C., 2014. Origin, properties and classification of black earths in Poland. Soil Science Annual 65(2): 80–90.

  • Łabaz B., Kabała C., Dudek M., Waroszewski J., 2019a. Morphological diversity of chernozemic soils in south-western Poland. Soil Science Annual 70(3): 211–224.

  • Łabaz, B., Kabala, C., Waroszewski, J., 2019b. Ambient geochemical baselines for trace elements in Chernozems – approximation of geochemical soil transformation in an agricultural area. Environmental monitoring and assessment 191, 19.

  • Łabaz B., Musztyfaga E., Waroszewski J., Bogacz A., Jezierski P., Kabala C., 2018. Landscape-related transformation and differentiation of Chernozems – Catenary approach in the Silesian Lowland, SW Poland. Catena, 161: 63–76.

  • Michéli E., Csorba Á., Szegi T., Dobos E., Fuchs M., 2019. The soil types of the modernized, diagnostic based Hungarian Soil Classification System and their correlation with the World reference base for soil resources. Hungarian Geographical Bulletin 68(2): 109–117. https://doi.org/10.15201/hungeobull.68.2.1

  • Michéli E., Fuchs M., Hegymegi P., Stefanovits P., 2006. Classification of the major soils of Hungary and their correlation with the World Reference Base for Soil Resources (WRB). Agrokémia és Talajtan 55(1): 19–28.

  • Michéli E., Krasilnikov P., 2009. The Hungarian Soil Classification System. [In:] A handbook of soil terminology, correlation and classification (Arnold R., Shoba S., Krasilnikov P., Marti J.J.I., Editors) Earthscan, London: 171–176.

  • Michéli E., Fuchs M., Láng V., Szegi T., Szabóné Kele G., 2014. Methods for modernizng the elements and structure of the Hungarian Soil Classification System. Agrokémia és Talajtan 63(1): 69–78.

  • Němeček J., Mühlhanselová M., Macků J., Vokoun J., Vavříček D., Novák P., 2011. Czech Taxonomic Classification System of Soils. ČZU, Praha.

  • Novák T. J., ÁrendásT., Switoniak M., 2018a. Soils of an undulating, cultivated loess plateau in North Mezőföld, Central Hungary. [In:] Soil Sequences Atlas IV (Świtoniak M., Charzyński P., Editors). Nicolaus Copernicus University, Torun: 113–123.

  • Novák T.J., Mester T., Balla D., Szabó G., 2018b. Culti-sequence of village garden soils ont he Great Hungarian Plain. [In:] Soil Sequences Atlas II (Świtoniak M., Charzyński P., Editors). Polish Society of Soil Science, Toruń, Poland: 248 pp.

  • Novák T.J., Incze J., Spohn M., Glina B., Giani L., 2014. Soil and vegetation transformation in abandoned vineyards of the Tokaj Nagy-Hill, Hungary. Catena 123: 88–98.

  • Novák T.J., Tóth C.A., 2016. Development of erosional micro-forms and soils on semi-natural and anthropogenic influenced solonetzic grasslands. Geomorphology 254: 121–129.

  • Pásztor L., Dobos E., Szatmári G., Laborczi A., Takács K., Bakacsi Z., Szabó J., 2014. Application of legacy soil data in digital soil mapping for elaboration of novel, countrywide maps of soil conditions. Agrokémia és Talajtan 63(1): 79–88.

  • Pozniak S.P., Havrysh N.S., 2019. Soils in the memory of world nations. Polish Journal of Soil Science 52(1): 1–13.

  • Šály R., Bedrna Z., Bublinec E., Čurlík J., Fulajtár E., Gregor J., Sobocká J., 2000. Morphogenetic classification system of soils in Slovakia. VÚPOP.

  • Šimanský V., Polláková N., Jonczak J., Jankowski M., 2016. Which soil tillage is better in terms of the soil organic matter and soil structure changes? Journal of Central European Agriculture 17(2): 391–401.

  • Skalský R., Fulajtár E., Šurina B., 2009. Correlation of chernozems classification in WRB and national Slovak soil classification system. Agrohimia i gruntoznavstvo 69: 87–93.

  • Smetanová A., Verstraeten G., Notebaert B., Dotterweich M., Létal A., 2017. Landform transformation and long-term sediment budget for a Chernozem-dominated lowland agricultural catchment. Catena 157: 24–34.

  • Societas Pedologica Slovaca, 2014. Morfogenetický klasifikačný systém pôd Slovenska. Bazálna referenčná taxonómia. Druhé upravené vydanie. Bratislava: NPPC – VÚPOP, Bratislava: 96 pp.

  • Soil Database, 2019: http://soils.umk.pl/database/

  • Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC: 633 pp.

  • Stefanovits P., 1992. Talajtan (3. kiadás) Mezőgazda Kiadó, Budapest: 379 pp.

  • Świtoniak M., 2014. Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, North-Eastern Poland. Catena 116: 173–184.

  • Świtoniak M., Kabała C., Karklins A., Charzyński P., Hulisz P., Mendyk Ł., Michalski A., Novak T., Penizek V., Reintnam E., Repe B., Saksa M., Vaisvalavicius R., Waroszewski J., 2018. Guidelines for Soil Description and Classification Central and Eastern European Students’ Version. Nikolaus Copernicus University, Toruń, Poland.

  • Tóth G., Jones A., Montanarella L., 2013. The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union. Environmental monitoring and assessment 185(9): 7409–7425.

  • Turski R., 1985. Genesis and properties of Chernozems of the West-Volhynian and Lublin Uplands. Roczniki Nauk Rolniczych series D, 202: 1–83.

  • Várallyay G., 2015. Soils, as the most important natural resources in Hungary (potentialities and constraints) – A review. Agrokémia és Talajtan, 64(2): 321–338. https://doi.org/10.1556/0088.2015.64.2.2

  • Vysloužilová B., Danková L., Ertlen D., Novák J., Schwartz D., Šefrna L., Delhon C., Berger, J.-F., 2014a. Vegetation history of chernozems in the Czech Republic. Vegetation history and archaeobotany 23: 97–108.

  • Vysloužilová B., Ertlen D., Šefrna L., Novák T., Virágh K., Rué M., Campaner A., Dreslerová D., Schwartz D., 2014b. Investigation of vegetation history of buried chernozem soil using near-infrared spetroscopy (NIRS). Quaternary International 365: 203–211.

  • Vysloužilová B., Ertlen D., Schwartz D., Šefrna L., 2016. Chernozem. From concept to classification: a review. AUC Geographica 51: 85–95.

  • Zádorová T., Penížek V., 2011. Problems in correlation of Czech national soil classification and World Reference Base 2006. Geoderma 167: 54–60.

  • Zádorová T., Penížek V., Šefrna L., Drábek O., Mihaljevič M., Volf Š., Chuman T., 2013. Identification of Neolithic to Modern erosion-sedimentation phases using geochemical approach in a loess covered sub-catchment of South Moravia, Czech Republic. Geoderma 195: 56–69.

  • Žíńala D., Juřicová A., Zádorová T., Zelenková K., Minařík R.kabala et al, 2019. Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic. European Journal of Remote Sensing 52, S1: 108–122.

OPEN ACCESS

Journal + Issues

Search