Sorption properties of granulometric fractions in Haplic Cambisol developed from boulder loam

Open access

Abstract

The aim of the paper was to investigate the sorption properties of granulometric fractions separated from the genetic horizons of arable Haplic Cambisol developed from boulder loams of the Middle-Polish (Riss) Glaciation, Wartanian Stadial (central Poland). Separation of granulometric fractions was made with application of the Atterberg method without the use of centrifuging and dispersing agents. The cation exchange capacity average value in cmol(+)kg−1 and % contribution in particular fractions reached: 1–0.1 mm – 2.1 (1.6%), 0.1–0.05 mm – 5.5 (4.0%), 0.05–0.02 mm – 8.5 (6.1%), 0.02–0.01 mm – 13.0 (10.1%), 0.01–0.005 mm – 16.1 (12.8%), 0.005–0.002 mm – 28.6 (20.5%) and fraction <0.002 mm – 48.7 (44.9%). Leaching of the total exchangeable bases was the largest in the 0.1–0.05 mm fraction and decreased successively with decreasing grain diameter. Sorption properties of the tested soil determine its high agricultural value and buffer properties. The cation exchange capacity of the recognised granulometric fractions successively increased with decrease of their diameter while leaching process intensity in individual fractions decreased gradually as their dimensions decreased. Calcium was the most leached cation, followed by magnesium and sodium, whereas potassium was not leached at all. Significant increase of the cation exchange capacity in fractions from carbonate horizons was mostly caused by the increased contribution of calcium, which could be released from carbonates during extraction of bases.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Asadu C.L.A. Diels J. Vanlauwe B. 1997. A comparison of the contributions of clay silt and organic matter to the effective CEC of soils of Subsaharan Africa. Soil Sci. 162(11): 785–794.

  • Bockheim J. Douglass D. 2006. Origin and significance of calcium carbonate in soils of southwestern Patagonia. Geoderma 136(3–4): 751–762.

  • Brogowski Z. Kwasowski W. 2015. An attempt of using soil grain size in calculating the capacity of water unavailable to plants. Soil Sci. Ann. 66(1): 21–28.

  • Brogowski Z. Kocoń J. 1984. Morphology of surface of sand grains from different genetic horizons of brown soil developed from heavy loam. Rocz. Glebozn. – Soil Sci. Ann. 35(1): 115–124.

  • Caravaca F. Lax A. Albaladejo J. 1999. Organic matter nutrient contents and cation exchange capacity in fine fractions from semiarid calcareous soils. Geoderma 93(3–4): 161–176.

  • Chojnicki J. 2002. Soil-forming processes in alluvial soils of central Vistula valley and Żuławy. Wyd. SGGW Warszawa: 83 pp.

  • Czaban J. Czyż E. Siebielec G. Niedźwiecki J. 2014. Longlasting effects of bentonite on properties of a sandy soil deprived of the humus layer. Int. Agrophys. 28: 279–289.

  • Dąbkowska-Naskręt H. Różański S. Bartkowiak A. 2016. Forms and mobility of trace elements in soils of park areas from the city of Bydgoszcz north Poland. Soil Sci. Ann. 67(2): 73–78.

  • Francaviglia R. Carroni A. Bazzoffi P. Troccoli A. Borrelli L. Napoli R. Ventrella D. Montemurro F. Chiarini F. 2016. Testing the effectiveness of the European cross-compliance standard 3.1 “Ploughing in Good Soil Moisture Conditions”. Int. J. Environ. Res. 10(4): 655–666.

  • IUSS Working Group WRB 2015. World Reference Base for Soil Resources 2014 update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO Rome.

  • Jahn R. Blume H.P. Asio V.B. et al. 2006. Guidelines for Soil Description. FAO Rome: 97 pp.

  • Joffe J. Kunin R. 1943. Mechanical separates and their fractions in the soil profile. II. The cation exchange properties and pedogenic implications. Soil Sci. Soc. Am. Proc. 8: 384–387.

  • Kalembasa D. Pakuła K. Jaremko D. 2011. Sorption properties of soils in the Siedlce upland. Acta Agrophysica 18(2): 311–319 (in Polish with English summary).

  • Korobova E. Linnik V. Chizhikova N. Alekseeva T. Shkinev V. Brown J. Dinu M. 2014. Granulometric and mineralogic investigation for explanation of radionuclide accumulation in different size fractions of the Yenisey floodplain soils. Journal of Geochemical Exploration 142: 49–59.

  • Kozłowski M. Komisarek J. 2017a. Textural diversity in selected Retisols in the catenaof the Opalenica Plain (western Poland). Soil Sci. Ann. 68(1): 1–18.

  • Kozłowski M. Komisarek J. 2017b. Analysis of the suitability of Polish soil texture classification for estimating soil water retention and hydraulic properties. Soil Sci. Ann. 68(4): 197–204.

  • Kuźnicki F. 1965. Properties and typology of soils from cretaceous decalcified siliceous rock of Roztocze region in relation to characteristics and genetic division of rendzinas. Rocz. Glebozn. – Soil Sci. Ann. 15(2): 345–408.

  • Kuźnicki F. Białousz S. Kamińska H. Oszmiańska M. Skłodowski P. Ziemińska A. Żakowska H. 1976. Rendzina soils developed from carbonate rocks of different geological formations over the area of the OEwiętokrzyskie mountains and their borderings. Rocz. Glebozn. – Soil Sci. Ann. 27(2): 19–48.

  • Le T.H.X. Marschner P. 2018. Mixing organic amendments with high and low C/N ratio influences nutrient availability and leaching in sandy soil. J. Soil Sci. Plant Nutr. 18: 952–964.

  • Leinweber P. Reuter G. Brozio K. 1993. Cation exchange capacities of organo-mineral particle-size fractions in soils from long-term experiments. J. Soil Sci. 44: 111–119.

  • Licznar S. 1976. Rendzinas and soils on limestone of the Opole region in the light of micromorphological and physicochemical investigations. Rocz. Glebozn. – Soil Sci. Ann. 27(3): 73–121.

  • Malik Z. Malik M. Yu-Tong Z. and Sheng-Gao L. 2014. Physical properties of unproductive soils of Northern China. Int. Agrophys. 28: 459–469.

  • Markiewicz M. Gonet S. Marszelewski W. Mendyk Ł. Sykuła M. 2017. Differentiation of soils and land use changes in the vicinity of the disappeared Gardeja lake (Northern Poland). Soil Sci. Ann. 68(3): 115–124.

  • Martins E. Melo V. Bohone J. Gilberto Abate G. 2018. Sorption and desorption of atrazine on soils: The effect of different soil fractions. Geoderma 322: 131–139.

  • McAleese D. McConaghy S. 1957. Studies on the basaltic soils of Northern Ireland. II. Contributions from the sand silt and clay separates to cation exchange properties. J. Soil Sci. 8(1): 135–140.

  • McAleese D. Mitchell W.A. 1958. Studies on the basaltic soils of Northern Ireland: V. Cation-exchange capacities and mineralogy of the silt separates (2–20 μ). J. Soil Sci. 9(1): 81–88.

  • Morrás H.J.M. 1995. Mineralogy and cation exchange capacity of the fine silt fraction in two soils from the southern Chaco Region Argentina. Geoderma 64: 281–295.

  • Musztyfaga E. Kabała C. 2015. Lithological discontinuity in Glossic Planosols (Albeluvisols) of Lower Silesia (SW Poland). Soil Sci. Ann. 66(4): 180–190.

  • Okołowicz M. 1996. Sorption capacity of particle size fractions of selected soils. Rocz. Glebozn. – Soil Sci. Ann. 47(1–2): 33–46.

  • Rafraf S. Guellouz L. Guiras H. Bouhlila R. 2016. Quantification of hysteresis effects on a soil subjected to drying and wetting cycles. Int. Agrophys. 30: 493–499.

  • Rastegari M. Saeedi M. Mollahosseini A. Ayatinia M. 2016. Phenanthrene sorption onto kaolinite; Heavy Metals and Organic Matter Effects. Int. J. Environ. Res. 10 3: 441–448.

  • Roth E. Mancier V. Fabre B. 2012. Adsorption of cadmium on different granulometric soil fractions: Influence of organic matter and temperature. Geoderma 189–190: 133–143.

  • Silva M. Anjos L. Pereira M. Schiavo J. Cavassani R. 2017. Soils in the karst landscape of Bodoquena plateau in cerrado region of Brazil. Catena 154: 107–117.

  • Singh B. Farenhorst A. Gaultier J. Pennock D. Degenhardt D. McQueen R. 2014. Soil characteristics and herbicide sorption coefficients in 140 soil profiles of two irregular undulating to hummocky terrains of western Canada. Geoderma 232: 107–116.

  • Skic K. Boguta P. Sokołowska Z. 2016. Analysis of the sorption properties of different soils using water vapour adsorption and potentiometric titration methods. Int. Agrophys. 30: 369–374.

  • Soares M. Alleoni L. Vidal-Torrado P. Cooper M. 2005. Mineralogy and ion exchange properties of the particle size fractions of some Brazilian soils in tropical humid areas. Geoderma 125: 355–367.

  • Stemmer M. Gerzabek M.H. Kandeler E. 1998. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biol. Biochem. 30: 9–17.

  • Tedrow J.C.F. 1966. Properties of sand and silt fractions in New Jersey soils. Soil Sci. 101(1): 24–30.

  • USDA SCS. 1992. Soil survey laboratory methods manual. Soil Survey Investigation Report No 42. Version 2.0.

  • van Reeuwijk L.P. 1992. Procedures for Soil Analysis. International Soil Reference and Information Centre Wageningen The Netherlands: 100 pp.

  • Zagórski Z. 2003. Mineralogical and micromorphological indicators of the origin and properties of rendzina soils developed from carbonate rocks of different geological formations. Wyd. Fundacja „Rozwój SGGW”. Warszawa: 124 pp.

Search
Journal information
Impact Factor


CiteScore 2018: 1.08

SCImago Journal Rank (SJR) 2018: 0.427
Source Normalized Impact per Paper (SNIP) 2018: 0.586

Index Copernicus Value (ICV) 2018: 114.45 pkt

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 46 46 36
PDF Downloads 30 30 19